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Abstract 

In this thesis, a novel approach for estimating the motion of on-road vehicles based 

on stereo image sequences from a moving platform is proposed. The approach focuses on 

the practical situations of the on-road traffic such as oncoming traffic and turning vehicles 

at urban intersections. The estimated states are the 2D position and orientation (yaw) of 

an observed vehicle relative to the ego-vehicle, as well as the observed vehicle’s velocity, 

acceleration and the rotational velocity (yaw rate). These parameters are estimated by 

means of 1st order Extended Kalman Filter provided by the stereo vision observations of 

tracked point on the observed vehicle’s surface. The stereo vision measurement model 

noise is analyzed and successfully characterized for the real test data, also the dynamic 

models noise is analyzed and sufficiently estimated through the proposed mechanical 

limitations assumption. The observability property of the overall system is inspected, such 

that its proved analytically and numerically that the system is observable for on-road 

practical situations. The overall system is systematically evaluated both on synthesized 

and real-world data from the realistic dataset “KITTI benchmark”, where the synthesized 

data results show that the proposed mechanically limited filter initialization and process 

noise variance accurately estimate the object pose and motion parameters in a very 

complicated situation with fast convergence, also the real data results show that the 

proposed system is able to reliably estimate the object pose and motion parameters in a 

variety of challenging situations. Finally, the limits of the system and the practical issues 

such as the filter initialization and the numerical errors are carefully investigated. 

 
 

Keywords: Kalman Filtering, Stereo Vision, Driver Assistance System, KITTI 

Benchmark, Random Process. 
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الدراسة ملخص  

يقترح هذا البحث طريقة جديدة لاستنباط متغيرات حركة المركبات على الطريق اعتمادا على دفق من صور الرؤية 

للمرور على الطرق مثل المركبات  العملية على الحالات  الدراسةركز ت .الثنائية يتم التقاطها من مركبة متحركة

موضع المركبة ثنائي الأبعاد و واتجاهها  . تقوم الطريقة باستنباط  القادمة و المركبات الملتفة على التقاطعات المرورية

. تستخدم الطريقة في استنباط المتغيرات نسبة إلى المركبة المرجعية و سرعتها وتسارعها و معدل دوران اتجاهها

على يتم تتبعها نقطة ل الرؤية الثنائية اتقياسرشح كلمان الموسع من الدرجة الأولى والذي يتم تزويده بالمذكورة م

وقياسها بشكل صحيح، و كذلك تم لرؤية الثنائية لقياس ال نموذج ضوضاء. في هذا البحث تم تحليل سطح المركبة

. لقد تم فرضية الحدود الميكانيكية للحركةل وتقديره كمياً بشكل فعال من خلاالنموذج الديناميكي  تحليل ضوضاء

في الحالات العملية  حيث أثبتنا أن الطريقة تتميز بهذه الخاصيةة استنباط متغيرات الحركة يقابلدراسة خاصية 

ة من خلال بيانات محاكا المنظومةبشكل نظامي تقييم كامل  . لقد تمإثباتاً تحليلياً و إثباتاً عددياً للمركبات على الطرق

( وقد أظهرت نتائج اختبار الطريقة من KITTIمن خلال بيانات العالم الحقيقي المستقاة من قاعدة بيانات ) و كذلك

خلال البيانات المولدة للمحاكاة أنه باستخدام فرضية الحدود الميكانيكية للحركة لضبط الشروط الابتدائية للمرشح و 

قادرة بشكل دقيق ومستقر  وسريع على استنباط المتغيرات المذكورة  تقويم ضوضاء النموذج الديناميكي فإن الطريقة

الاختبار من خلال بيانات العالم الحقيقي أظهرت نتائج  في حالات أصعب من الواقع العملي للمركبات على الطرق، كما

يوهات العملية ، في العديد من السينار مذكورةمتغيرات اللعلى الاستباط الدقيق لأن الطريقة قادرة وبشكل موثوق 

 عمل المرشحات و الأخطاء العدديةكضبط الشروط الابتدائية لالعملية  والمشاكل بيان حدود عمل النظامأخيراً تم ت

 البرمجية.
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Chapter 1 

Introduction 

1.1 Motivation  

According to Association for Safe International Road Travel (ASIRT) road traffic 

crashes rank as the 9th leading cause of death and account for 2.2% of all deaths globally 

since nearly 1.3 million people die and about 50 million are injured or disabled in road 

crashes each year (ASIRT, 2017). Therefore, the development of crashes avoidance 

systems, road-safety, in-vehicle information system (IVIS) and driver support systems 

(DSS) became a wide-open research area in the past decades. Until now there are 

hundreds of active projects in industry, universities, and research centers include adaptive 

cruise control (ACC), forward collision warning (FCW), lane departure warning (LDW), 

adaptive light control (ALC), traffic Sign recognition (TSR), blind spot detection (BSD), 

driver drowsiness detection (DDD), in-vehicle navigation system, intelligent speed 

adaptation (ISA), vehicle-to-vehicle (V2V) communication, on-road object recognition, 

and night vision etc. (Kim, S., Kang, J., Oh, S., Ryu, Y., Kim, K., Park, S., 2008). The 

two large projects in the literature are Intelligent vehicle initiative (IVI) funded by US 

Department of Transportation (1997–2005) and intelligent car initiative project (i2010) 

funded by European Commission. IVI aimed at preventing driver distraction, introducing 

of crash avoidance systems, and studying the effects of in-vehicle technologies on driver 

performance while i2010 project aimed to encourage smart, safe and green system for 

transportation and promotes cooperative research in intelligent vehicle systems (M. 

Akhlaq· Tarek R. Sheltami· Bo Helgeson· Elhadi M. Shakshuki, 2011). All of those 

systems are considered intelligent transportation systems that consists a very interesting 

and vital part of the smart city systems revolution. 

 In parallel many road environment perception modalities were developed like 

radio detection and ranging (Radar), light detection and ranging (Lidar), Laser scanners, 

sound navigation and ranging (Sonar), global positioning system (GPS) and computer 

vision. Although the GPS allows to reference the position of the on-road vehicles within 

a global coordinate system accurately, they lose this benefit in a lot on on-road situations 

where the satellite signals are loosed such as in confined areas. So among the above 

modalities the vision-based systems are becoming the most popular because of their 

independence from the urban infrastructure and low-cost since the cameras become 
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cheaper, smaller, and of higher quality than ever before (Sayanan Sivaraman,Mohan 

Manubhai Trivedi, 2013). 

1.2 Literature Review 

On-road vehicles detection and tracking has been explored by many researchers in 

the computer vision and intelligent transportation systems (ITS) community over the past 

two decades. In this section the proceeding proposed approaches in the literature will be 

divided into vehicle detection approaches and vehicle tracking approaches, the vehicle 

tracking approaches will be further divided into tracking approaches from stationary 

sensor platform and from moving platform, the moving platform approaches will be 

further divided into monocular and stereoscopic systems. 

1.2.1 Vehicle Detection Approaches 

The vehicle detection approaches is divided into the appearance-based approaches and 

the motion-based approaches that require a sequence of images for vehicle recognition. 

Appearance-based approaches are common in the monocular vehicle detection literature 

since they recognize vehicles directly from the images while motion-based approaches 

are common in the monocular because stereo sequences provide 3-D depth 

measurements. The extremely used features for appearance-based in the literature are the 

histogram of oriented gradient (HOG) features and Haar-like features. HOG features are 

descriptive image features, exhibiting good detection performance in a variety of 

computer vision tasks.  (M. Cheon, W. Lee, C. Yoon, and M. Park,, 2012)  use the 

symmetry of the HOG features extracted in a given image patch, along with the HOG 

features themselves for vehicle detection, The main drawback of HOG features is that 

they are quite slow to compute. Haar-like features are composed of sums and differences 

of rectangles over an image patch. They are well suited for real-time vehicles detection 

and high efficient for vehicles detection. (S. Sivaraman and M. Trivedi,, 2010) use Haar-

like features to detect the rear faces of preceding vehicles using a forward-facing camera, 

there are other appearance-feature used in the literature like the edges, the symmetry, the 

scale invariant feature transform (SIFT) features, Gabor features, the principal component 

analysis (PCA). Although It is often more direct to use motion-based approaches in stereo 

vision, the motion-based approached used for monocular vision in the literature. The main 

used motion-based approaches are the background modeling and the optical flow. 
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Adaptive background models have been used in some studies, in an effort to adapt 

surveillance methods to the dynamic on-road environment. (A. Broggi, A. Cappalunga, 

S. Cattani, and P. Zani, 2008) constructed an adaptive background model with vehicles 

detected based on motion that differentiated them from the background. The optical flow 

is a fundamental machine vision tool. In the literature optical flow is used for ego-motion 

estimation, detection of overtaking vehicles in the blind spot, classification of the scene 

as either intersection or non-intersection and segmentation of the on-road scene using 

video (Sayanan et.al.2013). 

1.2.2 Vehicle Tracking from Stationary Cameras 

The vehicle tracking approaches in the literature is divided into two categories; 

the approaches of tracking from stationary camera and the approaches of tracking from 

moving platform. In the former category (Koller,D.,K. Daniilidis, and H. Nagel, 1993) 

proposed vision-based vehicles tracking system for surveillance of highway sections 

traffic using stationary cameras placed at elevated position. Koller et. al. (1993) 

discriminated moving objects from the background on the basis of image flow, where 

clusters of image positions showing mainly translational displacements between 

consecutive frames, were assumed to belong to single vehicles, then a parametrized 3D 

vehicle shape model was projected onto the image plane and aligned to edges, the detected 

vehicles were tracked by means of an extended Kalman filter using a 3D vehicle motion 

model. (Kamijo, S., Y. Matsushita, K. Ikeuchi, and M. Sakauchi, 2000) segmented 

moving objects from a static or adaptive background model using background 

subtraction, while (Mosabbeb, E., M. Sadeghi, M. Fathy, and M. Bahekmat, 2007) 

depends on deviations from the background model in order to group the connected 

foreground pixels, yielding a binary image where each pixel represents either foreground 

or background are further analyzed. (Buch,N.,F. Yin,J. Orwell,D. Makris, andS. A. 

Velastin, 2009) introduced a model free object representation based on groups of corner 

features to yield more stable tracking results in dense traffic situations based on the law 

of common fate concept of Gestalt psychologists. The idea was that a group of points 

moving rigidly together was assumed to belong to the same vehicle. (Leotta, M.andJ. 

Mundy, 2007) tracked a set of contour segments instead of corner features in order to 

estimate the 3D translational motion of vehicles from low camera angle. 
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1.2.3 Vehicle Tracking from Moving Platforms 

In the category of vehicle tracking approaches from moving platforms (Badino, 

2004) proposed image-based method to distinguish static from independently moving 

points in the scene using compensating the ego-motion; the vehicle speed and yaw rate is 

provided by inertial sensors; that achieve additional robustness. 

1.2.4 Monocular Systems 

Most publications in single camera based vision addresses tracking leading 

vehicles on highways using various techniques such as using image statistics  (Zeng, 

Z.and S. Ma, 2002), using symmetry (Liu,M.,C. Wu, andY. Zhang, 2007); and using 

optical flow, contours and template-matching (Dahlkamp, H., A. Pece, A. Ottlik, and H. 

Nagel, 2004). A good survey on different vehicle detection methods from a moving 

platform using optical sensors is given in  (Sun,Z.,G. Bebis, andR. Miller, 2004). 

(Leibe,B.,N. Cornelis,K. Cornelis, andL. Van Gool, 2007) utilized the combination of 

depth and appearance and trained local classifiers to detect characteristic objects parts in 

the 2D image. 

1.2.5 Stereoscopic Systems 

 (Mark, W. van der and D. M. Gavrila, 2006) provided a good overview on stereo 

vision in the intelligent vehicle domain, including an extensive evaluation of different 

real-time stereo implementations.  (Mark, W. van der and D. M. Gavrila, 2006) modeled 

objects as upright planes on a ground plane, such planes can be identified based on an 

accumulation of equal distances within an image region, where the ground plane does not 

necessarily have to be flat. (Labayrade,R.,D. Aubert, andJ.-P. Tarel, 2002) proposed a 

solution for dealing with non-flat roads using v-disparity images. (Barrois, B., S. 

Hristova, C. Woehler, F. Kummert, and C. Hermes, 2009)  proposed fitting the stereo 

vision 3D point cloud data to approximate cuboid model of the vehicle shape. 

(Hahn,M.,C. Wöhler,J. Einhaus,C. Hermes, and F. Kummert, 2010) proposed an 

approach for object tracking and motion estimation based on stereo vision, optical flow, 

and mean shift clustering techniques, (Dang, T., C. Hoffmann, and C. Stiller, 2002) 

proposed method for fusing the depth information from stereo with motion. 

1.2.6 Tracking Strategies 

The Kalman filter (KF) is the most popular tracking technique that assumes a 

Gaussian probability distribution of the estimated parameters, it has several variants and 
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extensions, including the Extended Kalman filter (EKF), The Unscented Kalman filter, 

or multi-filter approaches. Kalman filters are used in combination with a linear motion 

model in (Dang, T., C. Hoffmann, and C. Stiller, 2002), or with particular vehicle motion 

models incorporating specific properties of vehicle movements (Leibe,B.,N. Cornelis,K. 

Cornelis, andL. Van Gool, 2007). 

Unlike KF the particle filter represents the posterior probability density function 

of a state estimate by a set of (random) sample state vectors drawn from this distribution 

(particles) that allows for modeling more complex distributions than Gaussians as well as 

nonlinear transformations of random variables (THRUN, Sebastian, 2005). The evolution 

of the particle set can be steered via a proper motion model. Hahn et. al. (2010) used 

particle filter with a linear motion model in or with constant turn models for tracking the 

3D pose of vehicles. Although one can observe an increase in publications that utilize a 

particle filter, the drawback of this filter is that it is non-deterministic and, depending on 

the problem, computationally much more complex than the Kalman filter, even if 

capabilities for parallel computing are exploited. In the case of a linear Gaussian system, 

the particle filter can never yield a better result than the Kalman filter (Barth, 2010). 

However, even the suboptimal EKF, which will play a key role in this thesis, yields very 

promising results in many practical situations at much lower computational costs. 

1.3 Problem Formulation 

Consider an observed vehicle that is moving on flat road as shown in figure (1.1), 

which is captured through sequence from forward-facing stereo vision system from the 

ego vehicle, and consider a coordinate frame system that is originated at the optical center 

of the left camera such that the z-axis is in the direction of the ego vehicle forward 

direction, the x-axis is in the right direction of the ego vehicle. The observed vehicle is 

moving in the horizontal plane X-Z, with the following states: 

 𝑥, 𝑧 denotes the observed vehicle position in the horizontal plane by meters 

 𝑣 denotes the polar velocity of the observed vehicle that is the magnitude of the 

velocity vector measured by (meter/second), note that it is assumed in the same 

direction of the vehicle forward neglecting the side slip angle. 

 𝑎 denotes the acceleration that is the time derivative of the polar velocity of the 

measured by (meter/second2). 

 ℎ is the heading angle of the observed vehicle, from the X-axis to the velocity 
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vector measured by (radian), counterclockwise for positive angles. 

 𝜔 denotes the time derivative of the heading angle (the turn rate), measured by 

(radian/second), counterclockwise for positive rate. 

 

 

Figure (1.1): The observed vehicle in the coordinate frame of the ego-vehicle 

The projection of the object on the adjacent image planes is a stream of noisy 

measurements of the lateral projection 𝑈𝐿𝑚 on the left camera and the disparity 𝑑𝑚 for 

that projected point 

[
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We will estimate the true states of the observed vehicle (𝑥, 𝑧, 𝑣, 𝑎, ℎ, 𝜔)  , which are 

constrained by the following dynamic model 𝑓 and the noisy the measurement model ℎ 

[𝒙, 𝒛, 𝒗, 𝒂, 𝒉,𝝎]𝒌+𝟏 = 𝒇([𝒙, 𝒛, 𝒗, 𝒂, 𝒉,𝝎]𝒌) + 𝒒𝒌 

[
𝑼𝑳𝒎
𝒅𝒎

]
𝒌

= 𝒉(𝒙, 𝒛, 𝒗, 𝒂, 𝒉,𝝎, 𝒌) + 𝒓𝒌 

Where 𝑞𝑘, 𝑟𝑘 parameterize the dynamic model and measurement model noises 

1.4 Thesis Contribution 

In this thesis we deployed two famous dynamic motion models; the constant turn 

rate and polar velocity (CTRPV), and the constant turn rate and acceleration (CTRA); in 

real stereo vision measurements based estimation. This study inspects the observability 

of the proposed approach analytically and numerically, also extends CTRPV, CTRA from 

global frame coordinates to a moving frame coordinates of the Karlshure Institute of 

Technology and Toyota Technologies Institute (KITTI) dataset ego vehicle and augment 

 

X 

z 
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the dataset environment parameters such that the estimator is compatible with the dataset 

objects motion estimation problem. An analysis of the stereo vision measurement noise 

was introducing, such that an adaptive measurement noise variance filters we proposed 

and evaluated. This study proposes reliable initialization and quantization models for 

noise variance of the filters using the knowledge of the mechanical limitation of the 

observed vehicle. The proposed approach was formulated to be extendable for 

deployment of any other estimation algorithms like unscented Kalman filter, interacting 

multiple models, particle filter, etc. 

1.5 Thesis Outline  

The remainder of this thesis will be organized as follows. Chapter 2 introduces the 

over whole architecture of our system components, also it gives the fundamental concepts 

of image formation and a comprehensive mathematical derivation of the on-road vehicles 

motion and the stereo vision. Chapter 3 introduces the notation of state estimation by EKF 

to be applied in later sections, then it systemizes the equations in the form of stochastic 

state estimation problem, manipulating the numerical instability issues and analyzing the 

measurement noise, ended by the demonstration of KITTI sensors processing, data 

extraction and coordinates reassigning. Chapter 4 addresses the observability problem 

analytically and numerically. The proposed system is systematically evaluated in Chapter 

5 both on simulated and KITTI real-world data addressing the practical issues such as 

initialization measurement and system model noise characterization. An outlook on future 

research as well as the conclusions of this contribution is given in Chapter 6. 

1.6 Research objectives 

The research aims to develop a reliable and an accurate estimation algorithm of the 

motion of the participant on-road vehicles that are located in the recognition range of 

forward lateral stereo vision system, considering the realistic on-road environment 

challenges. 
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Chapter 2 

System Architecture and Modeling 

2.1 The System Development Environment 

Surely it is unpractical to build the real environment for research purposes because 

of the high cost, unavailability of some components, installation time, and consuming 

efforts; instead the researchers work on well acquired datasets. In the past few years an 

increasing number of benchmarks were developed to push forward the performance of 

visual recognition systems, e.g., Caltech and Middlebury (Sayanan et. al. 2013). 

However, the results from state-of-the-art algorithms revealed that methods ranking high 

on established datasets such as Middlebury performed below average when being moved 

outside the laboratory to the real world since most of these datasets are simplistic and 

were taken in a controlled environment. Table(2.1) compares  between the current State-

of-the-Art Stereo-vision Benchmarks and Datasets So (Andreas Geiger and Philip Lenz 

and Christoph Stiller and Raquel Urtasun, 2013) developed KITTI dataset in order to 

reduce this bias by providing challenging benchmarks with novel difficulties to the 

computer vision community include non-Lambertian surfaces (e.g., reflectance, 

transparency), large displacements (e.g., high speed), a large variety of materials (e.g., 

matte vs. shiny), as well as different lighting conditions (e.g., sunny vs. cloudy). KITTI 

was developed as a novel challenging benchmark for the tasks of stereo, optical flow, 

visual odometry, simultaneous localization and mapping (SLAM) and 3D object detection 

(Geiger et. al. 2012). 

Table (2.1): Comparison of current State-of-the-Art Benchmarks and Datasets 

dataset type setting #sequences length #frames resolution 

EISATS synthetic - 1 - 498 0.3 Mpx 

Middlebury laboratory - 1 - 38 0.2 Mpx 

TUM RGB-D real indoor  27 0.4 km 65k 0.3 Mpx 

New College real outdoor 1 2.2 km 51k 0.2 Mpx 

Malaga 2009 real outdoor 6 6.4 km 38k 0.8 Mpx 

Ford Campus real outdoor 2 5.1 km 7k 1.0 Mpx 

KITTI real outdoor 22 39.2 km 41k 0.5 Mpx 
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2.2 System Architecture 

 

Figure (2.1): Diagram of the interacted components of the system 

The system architecture is demonstrated in Figure (2.1), the system consists of a moving 

ego-vehicle precepted its own motion by GPS/IMU inertial sensors and equipped by 

stereo vision system and laser scanner. Figure (2.2) shows KITTI ego-vehicle; VW Passat 

station wagon as recording platform, it recognizes the motion of the observed vehicle 

within the stereo vision sensor field of view distant less than 120 meters that is the laser 

scanner range. The state estimation algorithm is 1st order extended Kalman filter provided 

by the ego motion data from the inertial sensors, and the observed vehicle motion from 

the stereo vision measurements. The evaluation criteria of the estimation algorithms 

performance and efficiency is the root mean square RMS of the estimation error referred 

to the trusted data that are the relative position and heading of the observed vehicle 

measured by the laser scanner. In the case of synthesized data that provides all the true 

states so we compute the RMS for all the states for evaluation purpose. 

 
Figure (2.2): Ego-vehicle of KITTI dataset equipped by the sensory package 

KITTI stereo vision system specifications are summarized in Table (2.2), it consists of 

two high resolution (1.4 Megapixels) grayscale cameras (FL2-14S3M-C) provided by 

4mm Edmund Optics lenses with opening angle of 90deg, vertical opening angle of 
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35deg, while the rotating 3D laser scanner (Velodyne) is 10 Hz, 0.09 deg angular 

resolution, 120m range, 2 cm distance accuracy, 360 deg horizontal, 26.8 deg vertical 

field of view. 

Table (2.2): KITTI dataset stereo system specifications 

Image resolution 1382*512 pixels 

# cars per image up to 15 

# pedestrians per image up to 30 

Shutter speed 2 ms 

Frame rate 10 FPS 

Stereo baseline 54 cm 

Figure (2.3) shows the point cloud of 3D laser scanner projected on the corresponding 

stereo image. KITTI inertial and GPS navigation system is OXTS RT3003, 6 axes, 100 

Hz, L1/L2 RTK, resolution 0.02m / 0.1°, localization system which combines GPS, 

GLONASS, an IMU and RTK correction signals. The cameras, laser scanner and 

localization system were calibrated and synchronized, providing accurate ground truth. 

(Geiger et. al. 2013). 

 

 

Figure (2.3): KITTI 3D laser scanner point cloud projected on its corresponding image 

2.3 Vision System Model 

2.3.1 Pinhole Camera Model 

We start with the most specialized and simplest camera model, which is the basic 

pinhole camera. The geometry of pinhole camera is shown in Figure (2.4). The center of 

projection is called the camera center or the optical center C. The line from the camera 

center perpendicular to the image plane is called the principal axis or principal ray of the 

camera z-axis, and the point where the principal axis meets the image plane is called the 
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principal point P and the length from the optical center to the principal point is called the 

focal length  𝑓.  

 
Figure (2.4): Pinhole Camera Geometry & the vertical triangulation of the pinhole 

Camera (Hartley et. al. 2004). 

The central projection mapping from world point to image coordinates is described by the 

following equation (Richard Hartley, Andrew Zisserman, 2004) 

[
𝑢
𝑤
] = [

𝑓𝑥. 𝑥

𝑧
+ 𝑥0

𝑓𝑦. 𝑦

𝑧
+ 𝑦0

]                                              (2.1) 

Where 𝑓𝑥 , 𝑓𝑦 represent the focal length of the camera in terms of pixel dimensions in the 

x and y direction respectively. (𝑢,𝑤)  represent the projected point on the image plane x 

and y axes respectively in terms of pixel dimensions. (𝑥, 𝑦, 𝑧)  represents the world point 

position in the coordinate frame of the camera as shown in Figure (2.4). (𝑥0, 𝑦0) are the 

coordinates of the principal point in terms of pixel dimensions in Figure (2.5).  

 
Figure (2.5): Image x_y and camera xcam_ycam coordinate systems (Hartley et. al. 

2004). 

Note that under the assumption of flat road, we considered that the observed vehicle in 

the same altitude of the ego vehicle, so we neglect the vertical projection (w). 

2.3.2 Stereoscopic Vision Model 

The stereoscopic system consists of either one optical sensor which can be moved so that 

its relative positions at different times are known, or two (or more) optical sensors always 

maintaining the same known position with respect to each other. If more than one sensor 
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is utilized, it will be assumed that they are all identical, and the effect of each optical 

sensor (e.g., a camera) will be modeled as though it were an ideal pinhole camera (Nicolas 

Alvertos, 1989). Figure (2.6) shows the bird view of the lateral stereoscopic model where 

the two cameras are perfectly parallel have the same focal length 𝑓𝑥 and separated by a 

translation in the x-direction between the left and right camera optical centers, this 

translation is called baseline b. In Figure (2.6) the x-z axis of the stereo cameras 

corresponds to the ego longitudinal, lateral axis respectively. Given a real-world point 

(X,Y,Z) in  frame coordinates originated at the left camera optical center, ul, ur are the 

horizontal projection of (X,Y,Z) on the left and right camera image planes respectively 

as demonstrated in Figure (2.6), Applying equations (2.1) to get the horizontal 

projections: 

𝑢𝑙 =  
𝑓𝑥 . 𝑥

𝑧
+ 𝑥0                            (2.2) 

𝑢𝑟 =  
𝑓𝑥. (𝑥 − 𝑏)

𝑧
+ 𝑥0               (2.3) 

The distance between those two projected points is known as “disparity”,  

𝑑 = 𝑢𝑙 − 𝑢𝑟                                 (2.4) 

 

Figure (2.6): The lateral stereoscopic disparity and depth 

Substituting equations (2.2), (2.3) in equation (2.4) we get 
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𝑑 =
𝑓𝑥. 𝑏

𝑧
                                       (2.5) 

For known disparity, it’s possible to calculate the depth of the projected point: 

𝑧 =
𝑓𝑥. 𝑏

𝑑
                                     (2.6) 

Substituting equation (2.6) in (2.2), and isolating 𝑥 in the left side we get 

𝑥 =
(𝑢𝑙 − 𝑥0). 𝑧

𝑓𝑥
=
(𝑢𝑙 − 𝑥0). 𝑏

𝑑
                        (2.7) 

Equations (2.2,4) forms the nonlinear measurement model while equations (2.6,7) forms 

the linear measurement model of the stereo vision. 

2.4 Dynamic System Modeling 

The development of appropriate dynamic model that accurately describe the 

evolution of the tracked object status and efficiently handles the uncertainty of the 

excitation and disturbances is the most challenging issue in tracking problems.  There are 

many models that were developed in the last decades for on-road vehicles. This thesis 

deals with the curvilinear models that theoretically could describe the motion of road 

vehicles very accurately, errors may result from highly dynamic effects such as drifting 

or skidding. While models which are able to cope with such effects do exist like the 

realistic model proposed in (R. Pepy, A. Lambert, and H. Mounier, 2006), they will not 

be considered here for two reasons, most Intelligent Transportation Systems applications 

(ITS) are designed for scenarios with non-critical dynamics. Furthermore, the information 

which are necessary for estimating the additional parameters (e.g. slip from every tire, 

lateral acceleration) are not observable by exteroceptive sensors. Thus, such models can 

be used for estimating the ego vehicle’s motion only (Robin Schubert, Eric Richter, Gerd 

Wanielik, 2012). 

2.4.1 Simplified Bicycle Model 

The vehicle driving dynamics under normal conditions are approximated by a 

single-lane model of the Ackermann Steering Geometry in Figure (2.7), where the left 

and right wheels are merged at the axle’s center, yielding two-wheel model steering 

geometry usually referred to as bicycle model. (D. Schramm, M. Hiller, R. Bardini, 2014). 
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Figure (2.7): Ackermann Steering Geometry simplified bicycle model (Barth, 2010) 

The vehicle moving direction χ  with respect to a global world coordinate system is 

composed of the yaw angle ψ, and the side slip angle 𝛽𝐶 , as 

χ = ψ + 𝛽𝐶                                                   (2.8) 

The x-z plane translation of the center of mass C whose position is (𝑥𝐶 , 𝑧𝐶) with respect 

to a static world coordinate system results from the following observations 

𝑑𝑥𝐶
𝑑𝑠

= 𝑐𝑜𝑠(ψ + 𝛽𝐶),                    
𝑑𝑧𝐶
𝑑𝑠

= sin (ψ + 𝛽𝐶)                                       (2.9) 

with velocity  𝑣 =  ds/dt, where s represents the arc length, 

𝑑𝑥𝐶
𝑑𝑠

=
𝑑𝑋𝐶
𝑑𝑡
.
𝑑𝑡

𝑑𝑠
 =  

𝑋̇𝐶
𝑣
,                  

𝑑𝑧𝐶
𝑑𝑠

=
𝑑𝑍𝐶
𝑑𝑡
.
𝑑𝑡

𝑑𝑠
 =  

𝑍̇𝐶
𝑣
                                 (2.10) 

𝑥̇𝐶 = 𝑣 cos(ψ + 𝛽𝐶),                     𝑧̇𝐶 = 𝑣 sin (ψ + 𝛽𝐶)                                    (2.11) 

At normal conditions, the side slip angle 𝛽𝐶 becomes negligible at the center of the rear 

wheel.  

𝑋̇𝑟 = 𝑣 cos(ψ),               𝑍̇𝑟 = 𝑣 sin (ψ)                                           (2.12) 

equation (2.12) represents the principal simplified on-road vehicles motion that form the 

basic background for all bicycle model based advanced variants, so now we are ready to 

develop two of those variants called Constant turn rate and constant polar velocity model 

(CTRPV) Constant turn rate and constant acceleration model (CTRA), through the 

following systematic procedure:  

1. Statement the motion assumptions interpreted into differential equations and 

file:///E:/New%20folder/barth/dynamic%20models/d2111.docx%23_Toc488590377
file:///E:/New%20folder/barth/dynamic%20models/d2111.docx%23_Toc488590377
file:///E:/New%20folder/barth/dynamic%20models/d2111.docx%23_Toc488590378
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deriving the continuous-time state space model for static ego vehicle. 

2. Discretizing the state space model using the impulse discretization and zero order 

hold (ZOH) discretization.  

3. Augmenting the ego vehicle motion to get the discrete-time state space model for 

moving ego attached coordinate frame system. 

The dynamic models CTRPV, CTRA would be developed for the observed vehicle 

that is moving in the horizontal plane X-Z in Figure (2.8). 

 

Figure (2.8): The observed vehicle in the coordinate frame of the ego-vehicle 

Consider a coordinate frame system that is originated at the optical center of the left 

camera such that the z-axis is in the direction of the ego vehicle forward direction, the 

x-axis is in the right direction of the ego vehicle. 

2.4.2 CTRPV: Constant turn rate and constant polar velocity model 

the state vector of CT-CTRPV and DT-CTRPV models consists of the relative position, 

velocity, heading angle and heading turn rate of the observed vehicle as following: 

𝑋𝐶𝑇𝑅𝑃𝑉 = [𝑥, 𝑧, 𝑣, ℎ, 𝜔]
𝑇 

2.4.2.1 The continuous-time state space model 

In CTRPV modeling its assumed that the object is moving at constant polar velocity v 

and constant turn rate 𝜔 perturbed by zero mean gaussian white noises 𝑎, 𝛼 respectively 

𝑣̇ = 𝑎 = 𝑞𝑎(𝑡)                                         (2.13) 

𝜔̇ =  𝛼 = 𝑞𝛼(𝑡)                                         (2.14) 

 

X 

z 
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So, by coupling the differential equations (2.12-14) and seperating exitation inputs 

𝑎 𝑎𝑛𝑑 𝛼 from the state transition function, we get continuous-time  state space model of 

the CTRPV: 

𝑋̇𝐶𝑇𝑅𝑃𝑉(𝑡) =

[
 
 
 
 
𝑥̇
𝑧̇
𝑣̇
ℎ̇
𝜔̇]
 
 
 
 

= 𝑓(𝑋𝐶𝑇𝑅𝑃𝑉(𝑡)) + 𝑞(𝑡) =  

[
 
 
 
 
𝑣 cos(ℎ)

𝑣 sin(ℎ)
0
𝜔
0 ]

 
 
 
 

+ 

[
 
 
 
 
0
0
𝑎
0
𝛼]
 
 
 
 

         (2.15) 

2.4.2.2 The discrete-time state space model 

CT- CTRPV model could by discretized by the following exact solution 

𝑋𝐶𝑇𝑅𝑃𝑉(𝑡 + 𝑇)  =   𝑋𝐶𝑇𝑅𝑃𝑉(𝑡) + ∫ (𝑓(𝑋𝐶𝑇𝑅𝑃𝑉(𝜏)) + 𝑞(𝜏)) 𝑑𝜏
𝑡+𝑇

𝑡

          (2.16) 

where T is the sample time period from  𝑘 𝑡𝑜 𝑘 + 1  instants (F. Gustafsson and A. 

Isaksson, 1996), the solution could be rewritten as 

𝑋𝑘+1 = 𝑓𝐶𝑇𝑅𝑃𝑉(𝑋𝑘) + 𝐺𝐶𝑇𝑅𝑃𝑉(𝑋𝑘)𝑞𝑘                                           (2.17) 

where 𝑘  denotes sampling instants, 𝑞𝑘 is the process model stationary zero mean 

Gaussian noise, 𝑓𝐶𝑇𝑅𝑃𝑉: 𝑅
5 → 𝑅5 is the CTRPV model nonlinear state transition vector 

function 

𝑓𝐶𝑇𝑅𝑃𝑉 =

[
 
 
 
 
 
 𝑥 +

2𝑣

𝜔
sin (

𝜔𝑇

2
) cos (ℎ +

𝜔𝑇

2
)

𝑧 +
2𝑣

𝜔
sin (

𝜔𝑇

2
) sin (ℎ +

𝜔𝑇

2
)

𝑣
ℎ + 𝜔𝑇
𝜔 ]

 
 
 
 
 
 

                                           (2.18) 

𝐺𝐶𝑇𝑅𝑃𝑉: 𝑅
5∗2 is the affine model noise matrix formulated as input matrix, by zero-order-

hold and impulse input discretizing we get two variant input matrices, 

𝐺𝑧.𝑜.ℎ.
𝐶𝑇𝑅𝑃𝑉 =

[
 
 
 
 
0 0
0 0
𝑇 0
0 0
0 𝑇]

 
 
 
 

𝑘

,      𝐺𝑖𝑚𝑝.
𝐶𝑇𝑅𝑃𝑉 =

[
 
 
 
 
 
 
 
𝑇2

2
cos(ℎ) 0

𝑇2

2
sin(ℎ) 0

𝑇 0

0
𝑇2

2
0 𝑇 ]

 
 
 
 
 
 
 

                                           (2.19) 

the characteristics of the process noise 

𝐸[𝑞𝑘
𝑇] = 𝐸[𝑞𝑎𝑞𝛼] = [0 0]                                           (2.20) 

𝑄 =  𝑐𝑜𝑣[𝑞𝑘
𝑇] = 𝑐𝑜𝑣[𝑞𝑎𝑞𝛼]

𝑇 = 𝐷𝐼𝐴𝐺[𝜎𝑎
2𝜎𝛼
2]𝑇                                           (2.21) 
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Such that 𝜎𝑎
2 is the variance of the forward acceleration by (m/s2), 𝜎𝛼

2 is the variance of 

the turn acceleration by (rad/s2). (Robin Schubert, Eric Richter, Gerd Wanielik, 2012) 

Note that 𝐸[ ] denotes for the expected value mathematical operator or the mean, 𝑐𝑜𝑣[ ] 

denotes for the covariance mathematical operator, 𝐷𝐼𝐴𝐺[ ]  denotes for the diagonal 

matrix mathematical operator, those operators would be used in the rest of the thesis. 

2.4.3 CTRA: Constant turn rate and constant acceleration model 

the state vector of CT-CTRA and DT-CTRA models consists of the relative position, 

velocity, acceleration, heading angle and heading turn rate of the observed vehicle as 

following: 

𝑋𝐶𝑇𝑅𝐴 = [𝑥, 𝑧, 𝑣, 𝑎, ℎ, 𝜔]
𝑇 

2.4.3.1 The continuous-time state space model 

         We assume that the object is moving at constant polar acceleration perturbed by 

zero mean Gaussian white noise, J, and constant turn rate 𝜔 perturbed by zero mean 

Gaussian white noise, 𝛼, 

𝑎̇ = 𝐽 = 𝑞𝐽(𝑡)                                           (2.22) 

𝜔̇ =  𝛼 = 𝑞𝛼(𝑡)                                           (2.23) 

So, by coupling the differential equations (2.12,22,23), and seperating  of exitation inputs 

𝐽, 𝛼 from the state transition function we get CT state space model of the CTRA 

we get: 

𝑋̇𝐶𝑇𝑅𝐴(𝑡) =

[
 
 
 
 
 
𝑥̇
𝑧̇
𝑣̇
𝑎̇
ℎ̇
𝜔̇]
 
 
 
 
 

= 𝑓(𝑋𝐶𝑇𝑅𝐴(𝑡)) + 𝑞(𝑡) =

[
 
 
 
 
 
𝑣 cos(ℎ)

𝑣 sin(ℎ)
a
0
𝜔
0 ]

 
 
 
 
 

+

[
 
 
 
 
 
0
0
0
𝐽
0
𝛼]
 
 
 
 
 

                   (2.24) 

2.4.3.2 The discrete-time state space model 

Similar to the CTRPV, the discretization model of CTRA is 

𝑋𝑘+1 = 𝑓𝐶𝑇𝑅𝐴(𝑋𝑘) + 𝐺𝐶𝑇𝑅𝐴(𝑋𝑘)𝑞𝑘                                           (2.25) 

where 𝑘  denotes sampling instants, 𝑞𝑘  is the process model stationary zero mean 

Gaussian noise, 𝑓𝐶𝑇𝑅𝐴: 𝑅
6 → 𝑅6 is the CTRA model nonlinear state transition vector 

function 
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𝑓𝐶𝑇𝑅𝐴 =

[
 
 
 
 
 
 
 𝑥 +

1

𝜔2
[(𝑣𝜔 + 𝑎𝜔𝑇)𝑠𝑖𝑛(ℎ + 𝜔𝑇) + 𝑎 ∗ 𝑐𝑜𝑠(ℎ + 𝜔𝑇) − 𝑣𝜔𝑠𝑖𝑛(ℎ) − 𝑎 ∗ cos (ℎ)]

𝑧 +
1

𝜔2
[(−𝑣𝜔 − 𝑎𝜔𝑇)𝑐𝑜𝑠(ℎ + 𝜔𝑇) + 𝑎 ∗ 𝑠𝑖𝑛(ℎ + 𝜔𝑇) + 𝑣𝜔𝑐𝑜𝑠(ℎ) − 𝑎 ∗ sin (ℎ)]

𝑣 + 𝑎𝑇
𝑎

ℎ + 𝜔𝑇
𝜔 ]

 
 
 
 
 
 
 

 (2.26) 

𝐺𝐶𝑇𝑅𝐴: 𝑅
6∗2 is the affine model noise matrix formulated as input matrix, by zero-order-

hold and impulse input discretizing we get two variant input matrices, 

𝐺𝑧𝑜ℎ
𝐶𝑇𝑅𝐴 = 

[
 
 
 
 
 
0 0

0 0

0 0

𝑇 0

0 0

0 𝑇]
 
 
 
 
 

,       𝐺𝑖𝑚𝑝
𝐶𝑇𝑅𝐴 =

[
 
 
 
 
 
 
 
 
 
 
𝑇3

6
cos(ℎ) 0

𝑇3

6
sin(ℎ) 0

𝑇2

2
0

𝑇 0

0
𝑇2

2
0 𝑇 ]

 
 
 
 
 
 
 
 
 
 

                                           (2.27) 

the process noise is characterized by 𝜎𝐽
2 the variance of the forward jerk by (m/s3), 𝜎𝛼

2 the 

variance of the turn acceleration by (rad/s2). (Schubert et. al. 2012) 

𝐸[𝑞𝑘
𝑇] = 𝐸[𝑞𝐽𝑞𝛼] = [0 0]                                           (2.28) 

𝑄 =  𝑐𝑜𝑣[𝑞𝑘
𝑇] = 𝑐𝑜𝑣[𝑞𝐽𝑞𝛼]

𝑇
= 𝐷𝐼𝐴𝐺[𝜎𝐽

2𝜎𝛼
2]
𝑇
                                           (2.29) 

2.4.4 Th ego vehicle motion Augmentation 

Now, the system dynamic model for moving ego vehicle would be derived through the 

augmentation for the motion of the ego-vehicle through two consecutive stereo 

sequences. First note that equations (2.17-19,2.25-27) infers the 𝑥, 𝑧, ℎ at 𝑘 + 1instant of 

the observed vehicle in coordinate frame of the ego at k instant. If we know the ego-

motion from 𝑘 to 𝑘 + 1 time instants, as translational displacements  ∆x𝑒 , ∆z𝑒 , and 

rotational displacements ∆ℎ𝑒with respect to coordinate frame of the ego at k instant  as 

shown in Figure (2.9) we simply could derive the 𝑥, 𝑧, ℎ at 𝑘 + 1 instant of the observed 

vehicle in coordinate frame of the ego at k+1 instant, by  applying the translational 

displacement ∆x𝑒 , ∆z𝑒  and we get the translated observed vehicle position  

[
𝑥𝑘+1
𝑧𝑘+1

]
𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑒𝑑

= [
𝑥𝑘+1 − ∆x𝑒
𝑧𝑘+1 − ∆z𝑒

]                           (2.30) 
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Figure (2.9): The translational and rotational motion of the ego vehicle 

Then, by applying the rotational displacement ∆ℎ𝑒 transformation, we get the rotated 

observed vehicle position and heading. 

[
𝑥𝑘+1
𝑧𝑘+1

]
𝑎𝑢𝑔𝑚𝑒𝑛𝑡𝑒𝑑

= [
cos(∆ℎ𝑒) sin(∆ℎ𝑒)

−sin(∆ℎ𝑒) cos(∆ℎ𝑒)
] [
𝑥𝑘+1
𝑧𝑘+1

]
𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑒𝑑

                  (2.31) 

(ℎ𝑘+1)𝑎𝑢𝑔𝑚𝑒𝑛𝑡𝑒𝑑 = ℎ𝑘+1 − ∆ℎ𝑒                                                                      (2.32) 

In KITTI dataset ego-motion information  ∆ℎ𝑒 , ∆x𝑒 , ∆z𝑒  is incorporated from inertial 

navigation system. 

 

 

 

 

 ∆ℎ𝑒  

∆𝑥𝑒  

∆𝑧𝑒  
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Chapter 3 

System Filter Design and Implementation 

Filtering basically means the process of filtering out the noise in the measurements 

and providing an optimal estimate for the state given the observed measurements and the 

assumptions made about the dynamic system (Jouni Hartikainen, Arno Solin, and Simo 

Särkkä, 2011), the Kalman filter (KF) is considered the basic method for recursively 

solving the linear state space estimation problems. For nonlinear dynamic system model 

or nonlinear measurement model or both are nonlinear the Extended Kalman filter (EKF) 

which is the classical extension of KF is often used. 

EKF has a few serious drawbacks, which should be kept in mind when it’s used: 

1. the linear and quadratic transformations produce reliable results only when the error 

propagation can be well approximated by a linear or a quadratic function. If this 

condition is not met, the performance of the filter can be extremely poor. At worst, its 

estimates can diverge altogether. 

2. The Jacobian matrices (and Hessian matrices with second order filters) need to exist 

so that the transformation can be applied. However, there are cases, where this isn’t 

true. For example, the system might be jump-linear, in which the parameters can 

change abruptly. 

In many cases the calculation of Jacobian and Hessian matrices can be very difficult 

process, and it’s also prone to human errors (both derivation and programming). These 

errors are usually very hard to debug, as it’s hard to see which parts of the system produces 

the errors by looking at the estimates, especially as usually we don’t know which kind of 

performance we should expect. 

In this chapter we review a systematic framework of the 1st order Extended Kalman Filter 

(EKF) then the equations of vehicle motion and stereo vision in chapter 2 are reformulated 

compatibly with the EKF framework. 

3.1 Extended Kalman Filter 

The general model of the discrete time nonlinear dynamic system with nonlinear 

measurement mode is: 

𝑥𝑘+1 = 𝑓(𝑥𝑘, 𝑘) + 𝐺𝑞𝑘                 (3.1) 

𝑦𝑘 = ℎ(𝑥𝑘) + 𝑟𝑘                 (3.2) 
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where 𝑥𝑘+1 ∈ 𝑅
𝑛 is the state, 𝑦𝑘  ∈ 𝑅

𝑚 is the measurement, 𝑞𝑘 ~ 𝑁(0, 𝑄𝑘) is the process 

noise,𝑟𝑘 ~ 𝑁(0, 𝑅𝑘)  is the measurement noise on the time step k. 𝑓 is the nonlinear 

transition function of the dynamic model, 𝐺 is the noise matrix, ℎ is the  measurement 

model function. the prior distribution for the state is 𝑥0 ~ 𝑁(𝑥̂0, 𝑃0) , where 

parameters 𝑥̂0, 𝑃0 are set using the information known about the system under the study 

Like KF, also the first order EKF is separated to two steps: the prediction step, where the 

next state of the system is predicted given the previous measurements, and the update 

step, where the current state of the system is estimated given the measurement at that time 

step. Figure (2.10) presents the flowchart of 1st order EKF for one cycle 

 
Figure (2.10): Flowchart of 1st order EKF (one cycle)  (Bar-Shalom, Y., Li, X.-R., and 

Kirubarajan, T., 2001) 

The two steps of KF is formatted as the following equations, (Särkkä, 2007); 

Prediction step: 

Predicted (a priori) state estimate                          𝑥̂𝑘+1|𝑘 = 𝑓(𝑥̂𝑘|𝑘, 𝑘)                         (3.3) 

Predicted covariance estimate       𝑃𝑘+1|𝑘 = 𝐹𝑥(𝑥̂𝑘|𝑘, 𝑘)𝑃𝑘|𝑘𝐹𝑥
𝑇(𝑥̂𝑘|𝑘 , 𝑘) + 𝐺𝑄𝑘𝐺

𝑇    (3.4)  
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Update step:  

Innovation or measurement pre-fit residual             𝑦̃𝑘 = 𝑦𝑘 − ℎ(𝑥̂𝑘+1|𝑘, 𝑘 + 1)           (3.5) 

Innovation (or pre-fit residual) covariance                   𝑆𝑘= 𝐻𝑥𝑃𝑘+1|𝑘𝐻𝑥
𝑇 + 𝑅𝑘             (3.6) 

Optimal Kalman gain                                                   𝐾𝑘= 𝑃𝑘+1|𝑘𝐻𝑥
𝑇𝑆𝑘
−1                      (3.7) 

Updated (a posteriori) state estimate                          𝑥̂𝑘+1|𝑘+1 = 𝑥̂𝑘+1|𝑘  + 𝐾𝑘𝑦̃𝑘           (3.8) 

Updated (a posteriori) estimate covariance          𝑃𝑘+1|𝑘+1 = (𝐼 − 𝐾𝑘𝐻𝑥)𝑃𝑘+1|𝑘          (3.9) 

Measurement post-fit residual                                        𝑦̃𝑘 = 𝑦𝑘 − 𝐻𝑥𝑥̂𝑘+1|𝑘+1               (3.10) 

3.2 Model Equations 

Now we would reformulate the equations of vehicle motion in the form of equation (3.1), 

by combining the equations (2.17-21) and (2.31) we get the augmented CTRPV model: 

[
 
 
 
 
𝑥
𝑧
𝑣
ℎ
𝜔]
 
 
 
 

𝑘+1

= 

[
 
 
 
 
 
 cos(∆ℎ𝑒) [𝑥 +

2𝑣

𝜔
sin (

𝜔𝑇

2
) cos (ℎ +

𝜔𝑇

2
) −  ∆x𝑒] + sin(∆ℎ𝑒)[𝑧 +

2𝑣

𝜔
sin(

𝜔𝑇

2
) sin (ℎ +

𝜔𝑇

2
) −  ∆z𝑒 ]

−sin(∆ℎ𝑒) [𝑥 +
2𝑣

𝜔
sin (

𝜔𝑇

2
) cos (ℎ +

𝜔𝑇

2
) − ∆x𝑒] + cos(∆ℎ𝑒)[𝑧 +

2𝑣

𝜔
sin (

𝜔𝑇

2
) sin (ℎ +

𝜔𝑇

2
) −  ∆z𝑒 ]

𝑣
ℎ + 𝜔𝑇 − ∆ℎ𝑒

𝜔 ]
 
 
 
 
 
 

𝑘

 

+

(

 
 
 
 
 
 

[
 
 
 
 
 
 
 
𝑇2

2
cos(ℎ) 0

𝑇2

2
sin(ℎ) 0

𝑇 0

0
𝑇2

2
0 𝑇 ]

 
 
 
 
 
 
 

𝑘

  𝑶𝑹     

[
 
 
 
 
0 0
0 0
𝑇 0
0 0
0 𝑇]

 
 
 
 

𝑘

)

 
 
 
 
 
 

[
𝑞𝑎
𝑞𝛼
]
𝑘
                                                 (3.11) 

and combining the equations (2.25-29) and (2.31) we get the augmented CTRA model: 

[
 
 
 
 
 
𝑥
𝑧
𝑣
𝑎
ℎ
𝜔]
 
 
 
 
 

𝑘+1

=

[
 
 
 
 
 
cos(∆ℎ𝑒) ∗ 𝑥𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑒𝑑 + sin(∆ℎ𝑒) ∗ 𝑥𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑒𝑑
−sin(∆ℎ𝑒) ∗ 𝑧𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑒𝑑 + cos(∆ℎ𝑒) ∗ 𝑧𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑒𝑑

𝑣 + 𝑎𝑇
𝑎

ℎ + 𝜔𝑇 − ∆ℎ𝑒
𝜔 ]

 
 
 
 
 

𝑘

+

(

 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
 
𝑇3

6
cos(ℎ) 0

𝑇3

6
sin(ℎ) 0

𝑇2

2
0

𝑇 0

0
𝑇2

2
0 𝑇 ]

 
 
 
 
 
 
 
 
 
 

   𝐎𝐑   

[
 
 
 
 
 
0 0
0 0
0 0
𝑇 0
0 0
0 𝑇]

 
 
 
 
 

)

 
 
 
 
 
 
 
 

[
𝑞𝐽
𝑞𝛼
]
𝑘
              (3.12) 

where 

𝑥𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑒𝑑 = 𝑥 +
1

𝜔2
[(𝑣𝜔 + 𝑎𝜔𝑇)𝑠𝑖𝑛(ℎ + 𝜔𝑇) + 𝑎 ∗ 𝑐𝑜𝑠(ℎ + 𝜔𝑇) − 𝑣𝜔𝑠𝑖𝑛(ℎ) − 𝑎 ∗ cos (ℎ)] − ∆x𝑒 

https://en.wikipedia.org/wiki/Innovation_(signal_processing)
https://en.wikipedia.org/wiki/Residuals_(statistics)
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𝑧𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑒𝑑 = 𝑧 +
1

𝜔2
[(−𝑣𝜔 − 𝑎𝜔𝑇)𝑐𝑜𝑠(ℎ + 𝜔𝑇) + 𝑎 ∗ 𝑠𝑖𝑛(ℎ + 𝜔𝑇) + 𝑣𝜔𝑐𝑜𝑠(ℎ) − 𝑎 ∗ sin (ℎ)] − ∆z𝑒 

Such that for both models we have two input matrices (G) according to the discretization 

(ZOH and impulse respectively). In the prediction step the Jacobean of the transition 

function is required to be computed, So the Jacobean of the CTRPV augmented model is: 

𝐹𝑋 = |
𝜕𝑋𝑘+1

𝜕𝑋𝑘
| =  

[
 
 
 
 
c(∆ℎ𝑒)

−s(∆ℎ𝑒)
0      

0      

0      

s(∆ℎ𝑒)

c(∆ℎ𝑒)
0        

0        

0        

𝐴1,3
𝐴2,3
1

0

0

𝐴1,4
𝐴2,4
0

1

0

𝐴1,5
𝐴2,5
0

𝑇

1 ]
 
 
 
 

                                     (3.13) 

Where 

𝐴1,3 = c(∆ℎ𝑒)
𝜕𝑥𝑘+1

𝜕𝑣𝑘
+ s(∆ℎ𝑒) ∗

𝜕𝑧𝑘+1

𝜕𝑣𝑘
,              𝐴2,3 = −s(∆ℎ𝑒)

𝜕𝑥𝑘+1

𝜕𝑣𝑘
+ c(∆ℎ𝑒) ∗

𝜕𝑧𝑘+1

𝜕𝑣𝑘
 

𝜕𝑥𝑘+1
𝜕𝑣𝑘

=
2

𝜔
s (
𝜔𝑇

2
) c (ℎ +

𝜔𝑇

2
),          

𝜕𝑧𝑘+1
𝜕𝑣𝑘

= 
2

𝜔
s (
𝜔𝑇

2
) s (ℎ +

𝜔𝑇

2
) 

 

𝐴1,4 = c(∆ℎ𝑒)
𝜕𝑥𝑘+1

𝜕ℎ𝑘
+ s(∆ℎ𝑒) ∗

𝜕𝑧𝑘+1

𝜕ℎ𝑘
, 𝐴2,4 = −s(∆ℎ𝑒)

𝜕𝑥𝑘+1

𝜕ℎ𝑘
+ c(∆ℎ𝑒) ∗

𝜕𝑧𝑘+1

𝜕ℎ𝑘
 

𝜕𝑥𝑘+1
𝜕ℎ𝑘

= 
−2𝑣

𝜔
s (
𝜔𝑇

2
) s (ℎ +

𝜔𝑇

2
),        

𝜕𝑧𝑘+1
𝜕ℎ𝑘

=
2𝑣

𝜔
s (
𝜔𝑇

2
) c (ℎ +

𝜔𝑇

2
) 

 

𝐴1,5 = c(∆ℎ𝑒)
𝜕𝑥𝑘+1

𝜕𝜔𝑘
+ s(∆ℎ𝑒) ∗

𝜕𝑧𝑘+1

𝜕𝜔
,            𝐴2,5 = −s(∆ℎ𝑒)

𝜕𝑥𝑘+1

𝜕𝜔𝑘
+ c(∆ℎ𝑒) ∗

𝜕𝑧𝑘+1

𝜕𝜔𝑘
 

 

𝜕𝑥𝑘+1
𝜕𝜔𝑘

=
𝑣𝑇

𝜔
𝑐 (
𝜔𝑇

2
) c (ℎ +

𝜔𝑇

2
) −

2𝑣

𝜔2
𝑠 (
𝜔𝑇

2
) c (ℎ +

𝜔𝑇

2
) −

𝑣𝑇

𝜔
𝑠 (
𝜔𝑇

2
) s (ℎ +

𝜔𝑇

2
) 

= [𝑐𝑜𝑠 (ℎ +
𝜔𝑇

2
) ∗ [

𝑣𝑇

𝜔
cos (

𝜔𝑇

2
) −

2𝑣

𝜔2
sin (

𝜔𝑇

2
)]] − [

𝑣𝑇

𝜔
sin (

𝜔𝑇

2
) sin (ℎ +

𝜔𝑇

2
)] 

 

𝜕𝑧𝑘+1
𝜕𝜔𝑘

=
𝑣𝑇

𝜔
𝑐 (
𝜔𝑇

2
) s (ℎ +

𝜔𝑇

2
) −

2𝑣

𝜔2
𝑠 (
𝜔𝑇

2
) s (ℎ +

𝜔𝑇

2
) +

𝑣𝑇

𝜔
𝑠 (
𝜔𝑇

2
) c (ℎ +

𝜔𝑇

2
) 

= [𝑠𝑖𝑛 (ℎ +
𝜔𝑇

2
) ∗ [

𝑣𝑇

𝜔
cos (

𝜔𝑇

2
) −

2𝑣

𝜔2
sin (

𝜔𝑇

2
)]] + [

𝑣𝑇

𝜔
sin (

𝜔𝑇

2
) cos (ℎ +

𝜔𝑇

2
)] 

The analytical expression for the Jacobean of the CTRA augmented model were obtained 

using the MATLAB Symbolic Math toolbox as shown in Analytic_CTRA_JAC.m in 

Appendix B. The expression is very complicated and long to be written textually in the 

thesis. 

3.2.1 Numerical aspects 

In the context of implementing the prediction step of the filter, the transition functions 

𝑓𝐶𝑇𝑅𝑃𝑉, 𝑓𝐶𝑇𝑅𝐴  and their Jacobeans 𝐹𝐶𝑇𝑅𝑃𝑉𝑋 , 𝐹𝐶𝑇𝑅𝐴𝑋 where implemented as MATLAB 

functions, since they contain division by 𝜔 terms which could cause filter instability in 
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the case of division by zero numerical error at zero 𝜔  those terms are substituted by its 

limit as 𝜔  tends to zero, for CTRPV transition function : 

lim
𝜔→0

{
2𝑣

𝜔
sin (

𝜔𝑇

2
) cos (ℎ +

𝜔𝑇

2
)} = 𝑣𝑇𝑐𝑜𝑠(ℎ)                                      (3.14) 

lim
𝜔→0

{
2𝑣

𝜔
sin (

𝜔𝑇

2
) sin (ℎ +

𝜔𝑇

2
)} = 𝑣𝑇𝑠𝑖𝑛(ℎ)                                      (3.15) 

for CTRA transition function : 

lim
𝜔→0

{
1

𝜔2
[(𝑣𝜔 + 𝑎𝜔𝑇)𝑠𝑖𝑛(ℎ + 𝜔𝑇) + 𝑎 ∗ 𝑐𝑜𝑠(ℎ + 𝜔𝑇) − 𝑣𝜔𝑠𝑖𝑛(ℎ) − 𝑎 ∗ cos (ℎ)}

= (2𝑣𝑇 + 𝑎𝑇2) ∗ 𝑐𝑜𝑠(ℎ)/2                                      (3.16) 

𝒍𝒊𝒎
𝝎→𝟎

{
𝟏

𝝎𝟐
[(−𝒗𝝎 − 𝒂𝝎𝑻)𝒄𝒐𝒔(𝒉 +𝝎𝑻) + 𝒂 ∗ 𝒔𝒊𝒏(𝒉 + 𝝎𝑻) + 𝒗𝝎𝒄𝒐𝒔(𝒉) − 𝒂 ∗ 𝒔𝒊𝒏 (𝒉)}

= (𝟐𝒗𝑻 + 𝒂𝑻𝟐) ∗ 𝒔𝒊𝒏(𝒉)/𝟐                                      (𝟑. 𝟏𝟕) 

And for the Jacobean of CTRPV transition function: 

lim
𝜔→0

𝐴1,3 = 𝑇𝑐𝑜𝑠(∆ℎ𝑒 − ℎ),        lim
𝜔→0

𝐴1,4 = 𝑣𝑇𝑠𝑖𝑛(∆ℎ𝑒 − ℎ),       lim
𝜔→0

𝐴1,5 =
𝑣𝑇2𝑠𝑖𝑛(∆ℎ𝑒 − ℎ)

2
       (3.18) 

lim
𝜔→0

𝐴2,3 = −𝑇𝑠𝑖𝑛(∆ℎ𝑒 − ℎ),     lim
𝜔→0

𝐴2,4 = 𝑣𝑇𝑐𝑜𝑠(∆ℎ𝑒 − ℎ),      lim
𝜔→0

𝐴2,5 =
𝑣𝑇2𝑐𝑜𝑠(∆ℎ𝑒 − ℎ)

2
       (3.19) 

Equations 3.11-19 are implemented in CTRPV.m, CTRA.m and JAC_CTRPV.m files. 

The numerical Jacobian for CTRA based on the following numerical derivative: 

𝜕𝑥𝑘+1
𝜕𝜔𝑘

= 
𝑥𝑘+1(𝑥𝑘 , 𝑧𝑘 , 𝑣𝑘 , 𝑎𝑘, ℎ𝑘 , 𝜔𝑘 + ∆𝜔) − 𝑥𝑘+1(𝑥𝑘 , 𝑧𝑘 , 𝑣𝑘 , 𝑎𝑘, ℎ𝑘 , 𝜔𝑘)

∆𝜔
∶ ∆𝜔 𝑖𝑠 𝑠𝑚𝑎𝑙𝑙 𝑒𝑛𝑜𝑢𝑔ℎ 

is also implemented as function handle in num_JAC_CTRA.m file, see appendix B for 

all MATLAB files. 

3.3 Measurement Equations 

3.3.1 Nonlinear measurement model 

The lateral stereoscopic vision system equations (2.3) and (2.5) is reformulated in the 

nonlinear measurement model of equation (3.2) as following: 

𝑌𝑚 = [
𝑢𝑙𝑚
𝑑𝑚
] = ℎ(𝑋) + 𝑟𝑘 = [

𝑓𝑥 . 𝑥

𝑧
+ 𝑥0

𝑓𝑥 . 𝑏

𝑧

] + [
𝑟𝑈𝐿
𝑟𝑑
]                                     (3.20) 

Where m subscript denotes measured quantity,  𝑟𝑘 = [𝑟𝑈𝐿𝑟𝑑]
𝑇  is the measurement 

stationary Gaussian noise with zero mean and R covariance, 

                        𝐸[𝑟𝑘] = [0 0]
𝑇, 𝑅 =  𝑐𝑜𝑣[𝑟𝑘] = 𝐷𝐼𝐴𝐺[𝜎𝑈𝐿

2 𝜎𝑑
2]
𝑇
 

In the update step the Jacobean of the measurement model function is required to be 

computed, So the Jacobean of ℎ(𝑋) is  
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𝐻𝑋 = |
𝜕ℎ(𝑋)

𝜕𝑋
|
𝑋

= [

𝑓𝑥
𝑧

−
𝑓𝑥. 𝑥

𝑧2
0 0 0

0 −
𝑓𝑥. 𝑏

𝑧2
0 0 0

]                                     (3.21) 

3.3.2 Linear measurement model 

The lateral stereoscopic vision system equations (2.6) and (2.7) extract the observed 

vehicle position (x,z) relative to the ego vehicle left camera optical center; assuming 

additive noise, the linear measurement model for CTRPV model becomes,    

[
𝑥𝑚
𝑧𝑚
]
𝑘
= 𝐻𝐶𝑇𝑅𝑃𝑉 . 𝑥𝐶𝑇𝑅𝑃𝑉𝑘 + 𝑟𝑘 = [

1 0 0 0 0
0 1 0 0 0

]

[
 
 
 
 
𝑥
𝑧
𝑣
ℎ
𝜔]
 
 
 
 

𝑘

+ [
𝑟𝑥
𝑟𝑧
]                        (3.22) 

and the linear measurement model for CTRA model becomes,   

[
𝑥𝑚
𝑧𝑚
]
𝑘
= 𝐻𝐶𝑇𝑅𝐴. 𝑥𝐶𝑇𝑅𝐴𝑘 + 𝑟𝑘 = [

1 0 0 0 0 0
0 1 0 0 0 0

]

[
 
 
 
 
 
𝑥
𝑧
𝑣
𝑎
ℎ
𝜔]
 
 
 
 
 

𝑘

+ [
𝑟𝑥
𝑟𝑧
]                    (3.23) 

Where m subscript denotes measured quantity, 𝑟𝑘 = [𝑟𝑥𝑟𝑧]
𝑇  is the measurement 

stationary gaussian noise with zero mean and R covariance, 

                         𝐸[𝑛𝑘] = [0 0]
𝑇, 𝑅 =  𝑐𝑜𝑣[𝑟𝑘] = 𝐷𝐼𝐴𝐺[𝜎𝑥

2𝜎𝑧
2]𝑇 

3.3.2.1 The Linear Measurement Noise Analysis 

For the selected test data of KITTI the stereo vision parameters are ( 𝑓𝑥 721.5 pixels, 𝑏 

0.54 m, 𝑥0 609.556 pixels ), and the measurements variance was computed In chapter 5 

as 𝜎𝑑 = + 0.8408 𝑝𝑖𝑥𝑒𝑙 and 𝜎𝑢𝑙 = + 13.83 𝑝𝑖𝑥𝑒𝑙, So for these parameters the linear 

measurement model noise [𝑟𝑥𝑟𝑧]  is analyzed. [𝑟𝑥𝑟𝑧]  is depending on nonlinear 

measurement model noise [𝑟𝑈𝐿𝑟𝑑] according to the following relations: 

𝜎𝑥 = [
𝜕𝑥

𝜕𝑑
]
𝑑
. 𝜎𝑑 + [

𝜕𝑥

𝜕𝑢𝑙
]
𝑢𝑙
. 𝜎𝑢𝑙 = −

(𝑢𝑙 − 𝑥0). 𝑏

𝑑2
𝜎𝑑 +

𝑏

𝑑
𝜎𝑢𝑙                     (3.24) 

𝜎𝑧 = [
𝜕𝑧

𝜕𝑑
]
𝑑
. 𝜎𝑑 + [

𝜕𝑧

𝜕𝑢𝑙
]
𝑢𝑙
. 𝜎𝑢𝑙 = −

𝑓𝑥. 𝑏

𝑑2
𝜎𝑑                                                  (3.25) 

Figure (3.1) depicts 𝜎𝑧 vs. 𝜎𝑑 for disparity in the range [5-35pixels]. For positive fixed 

𝜎𝑑 as d decreasing 𝜎𝑧 increasing dramatically because 𝑑−2 term. 
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Figure (3.1): 𝜎𝑧 vs. 𝑑 and 𝜎𝑑 

Figure (3.2) plots 𝜎𝑧 vs. z in the range [10m, 80m] its noted that point far 60m suffers -

7.952m error in longitudinal position due to 𝜎𝑑. 

 
Figure (3.2): 𝜎𝑧 vs. 𝑧  for test data nominal 𝜎𝑑 

Figure (3.3) depicts 𝜎𝑥  vs. 𝜎𝑢𝑙  for disparity in the range [4,39] pixels equivalent to 

longitudinal position z in the range [97.4, 9.99] meters respectively, for KITTI stereo 

vision parameters, to be able represents the relation graphically we are fixing 𝜎𝑑  at 

+0.8404 pixels and ul at 800 pixels as the our work in KITTI, as the disparity d decreasing 

(z increasing) so 𝜎𝑥 changes dramatically because 𝑑−2 term. 
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Figure (3.3): 𝜎𝑥 vs. 𝜎𝑢𝑙 and 𝜎𝑑 

Figure (3.4) shows 𝜎𝑥 vs. the depth z in the range [10,90m] at KITTI nominal 

𝑢𝑙, 𝜎𝑢𝑙  𝑎𝑛𝑑 𝜎𝑑, it’s clear that at z ~74.5m we have 𝜎𝑢𝑙 = 0  introducing chance of noise-

by noise cancellation in the linear measurement model for future deep analysis. 

 
Figure (3.4): 𝜎𝑥vs. z at KITTI nominal 𝑢𝑙, 𝜎𝑢𝑙, 𝜎𝑑 

Figure (3.5) depicts 𝜎𝑥 vs. 𝜎𝑢𝑙 at fixed 𝑧 = 74𝑚 for ul in the range [700,1200 pixels] at 

nominal 𝜎𝑑  for 𝑑 = 5.2653 pixels its clear that as ul increasing (z increasing) 

𝜎𝑥 decreasing linearly. 
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Figure (3.5): 𝜎𝑥 vs. 𝜎𝑢𝑙, 𝑢𝑙 for KITTI nominal 𝑑, 𝜎𝑑 

Figure (3.6)  shows 𝜎𝑥 vs. 𝑥 in the range [10m, 60m] for KITTI nominal disparity, 𝜎𝑑 and 

𝜎𝑢𝑙 . also, when x = 19.74m we have 𝜎𝑥~ 0 , introducing chance of noise-by noise 

cancellation in the linear measurement model for future deep analysis. 

 

Figure (3.6): 𝜎𝑥 vs. 𝑥 for KITTI nominal 𝑑, 𝜎𝑑 , 𝜎𝑢𝑙 
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3.4 Real Data Processing 

All sensor readings of a sequence are zipped into a single file named by its recording date 

and number as shown in Figure (3.7). Timestamps are stored in timestamps.txt per frame 

and sensor readings are provided in the corresponding sub-folders. For each sequence, 

the dataset provides the object annotations in form of 3D bounding box tracklets and a 

calibration file (Geiger et. al. 2012). 

 
Figure (3.7): Structure of the provided Zip-Files that stores all KITTI sequences (Geiger 

et. al. 2012). 

The sensors are prepared for the estimation algorithm as the following diagram 

 

Figure (3. 8) The sensors data flow diagram 

Inertial Sensors data: The information of the ego vehicle motion between each two 

successive stereo frames (∆x𝑒 , ∆z𝑒∆ℎ𝑒) are extracted from OXTS (GPS/IMU) data that 

provides 30 different GPS/IMU values in a text file in the geographic coordinates 

including altitude, global orientation, velocities, accelerations, angular rates, accuracies 

and satellite information. 
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Laser scanner data: The Laser scans are stored as floating-point binaries where each point 

is stored with its (x-y-z) coordinate and an additional reflectance value 

 

Figure (3.9): extraction of the observed point image position (u, v) for frame no. 45 

As shown in Figure (3.9) the laser scanner frame data were projected on the corresponding 

left camera image, the position of the interested point in the image plane (u,w)  were 

extracted manually, its corresponding position in the laser scanner coordinate system was 

retrieved then transformed into the stereo coordinate system using the transformation 

matrices in the calibration file of the interested sequence. 

Stereo vision sequences data: since the rectified images are available in the dataset, so we 

could use disparity function in MATLAB which returns the disparity map of two equi-

dimensional rectified images, such that the disparity of pixel located in (u, v) in the left 

camera image is the uth row, vth column element of the disparity map. So, we extract the 

disparity of the observed point over all the frames that capture the vehicle and using the 

lateral stereoscopic model equations we measure the (x, z) position of the observed point 

in the ego stereo vision left camera coordinates frame system. For each dynamic object 

within the left camera’s field of view, KITTI provide annotations in the form of 3D 

bounding box tracklets. Represented in Laser scanner coordinates, the tracklets are stored 

in date_drive_tracklets.xml. Each object is assigned a class and its 3D size (height, width, 

length). As illustrated in Figure (3.10), the level of occlusion and truncation is specified. 

 
Figure (3.10): KITTI annotations: 3D bounding box tracklets in Laser scanner 

coordinates (Geiger et. al. 2012).. 
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As shown in Figure (3.11) the position data by KITTI bounding box is for the center of 

the observed vehicle. Since we are interested in the position of the center of the rear or 

the front (the visible and measured points by the stereo vision), it is derived in equations 

3.26-3.27  

 
Figure (3.11): The position and yaw of annotated 3D bounding boxes in velodyne, left 

camera coordinate system (Geiger et. al. 2013). 

𝒙𝒓𝒆𝒂𝒓 = 𝒙𝒄𝒆𝒏𝒕𝒆𝒓 −
𝒍

𝟐
𝒄𝒐𝒔(𝒓𝒛),        𝒙𝒇𝒓𝒐𝒏𝒕 = 𝒙𝒄𝒆𝒏𝒕𝒆𝒓 +

𝒍

𝟐
𝒄𝒐𝒔(𝒓𝒛)                   (𝟑. 𝟐𝟔) 

𝒚𝒓𝒆𝒂𝒓 = 𝒚𝒄𝒆𝒏𝒕𝒆𝒓 −
𝒍

𝟐
𝒔𝒊𝒏(𝒓𝒛) , 𝒚𝒇𝒓𝒐𝒏𝒕 = 𝒚𝒄𝒆𝒏𝒕𝒆𝒓 +

𝒍

𝟐
𝒔𝒊𝒏(𝒓𝒛)                  (𝟑. 𝟐𝟕) 

Where l is the length of the observed vehicle, rz is its heading from velodyne x-axis. So 

in order to convert rz from left camera x-axis ℎ we apply eq. 3.28 

𝒉 = 𝒓𝒛 +
𝝅

𝟐
                                            (𝟑. 𝟐𝟖) 

3.4.1 Assigning the coordinate frames/Matrix transformations 

 

Figure (3.12): The Sensory Package Setup (Geiger et. al. 2013). 

Figure (3.12) illustrates the dimensions and mounting positions of the sensors (red) with 

respect to the ego vehicle body. Heights above ground are marked in green and measured 

with respect to the road surface. Transformations between sensors are shown in blue. The 

coordinate systems are defined as illustrated in Figure (2.2) and Figure (3.11), i.e.: 
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 Camera: x = right, y = down, z = forward 

 Velodyne: x = forward, y = left, z = up 

 GPS/IMU: x = forward, y = left, z = up 

The rigid body transformation from Laser scanner coordinates to left camera coordinates 

is given by KITTI for every day of recording in calib_velo_to_cam.txt in terms of 3*3 

rotation matrix and 3 translation column vectors. The transformation 

(2011_09_26_drive_0029_sync) sequence of test data no. 1 rigid body by the dataset is 

given by: 

[
𝑥
𝑦
𝑧
]

𝑙𝑒𝑓𝑡 𝑐𝑎𝑚𝑒𝑟𝑎

= [
0.0075 −1 −0.0006
0.0148 0.0007 −0.9999
0.9999 0.0075 0.0148

] [
𝑥
𝑦
𝑧
]

𝑣𝑒𝑙𝑜𝑑𝑦𝑛𝑒

+ [
0.0041
−0.0763
−0.2718

]          (329) 

 

 

 

 

 

 



www.manaraa.com

 

 36 

 

 

 

Chapter 4 

Observability 

 



www.manaraa.com

 

 37 

Chapter 4 

Observability 

In this chapter we discuss the observability property of our system. The number of 

observable states of linear time-invariant (LTI) system equales the rank of  the 

observability matrix which can be formulated from the system matrix A, and the output 

matrix C. Thus, the output matrix in the measurement model and  the system matrix can 

be derived from the CTRPV and the CTRA models. 

4.1 Observability of CT-CTRPV model 

Look at CT-CTRA model in equation (2.15) in the form 𝑋̇ = 𝑓(𝑋) + 𝑈 , we got the 

linearized system matrix 𝐴𝐶𝑇𝑅𝑃𝑉  via computing the Jacobean of the state transition 

function 𝑓(𝑋) 

𝐴𝐶𝑇𝑅𝑃𝑉 = |
𝜕𝑓(𝑋)

𝜕𝑋
|
𝑋(𝑡)

= 

[
 
 
 
𝜕𝑥̇1

𝜕𝑥1
⋯

𝜕𝑥̇1

𝜕𝜔

⋮ ⋱ ⋮
𝜕𝜔̇

𝜕𝑥1
⋯

𝜕𝜔̇

𝜕𝜔 ]
 
 
 
=  

[
 
 
 
 
0   
0   
0   
0   
0   

0   
0   
0   
0   
0   

cos(ℎ)   −
sin(ℎ)
0
0
0

𝑣 sin(ℎ)

𝑣 cos(ℎ)
0
0
0

0
0
0
1
0]
 
 
 
 

        (4.1) 

𝐴𝐶𝑇𝑅𝑃𝑉 depends only on ℎ, 𝑎𝑛𝑑 𝑣,. For the linear measurement model in equation (3.22), 

the observability matrix 𝑂 is 

𝑂 =  [

𝐻
𝐻𝐴𝐶𝑇𝑅𝑃𝑉

⋮
𝐻𝐴𝐶𝑇𝑅𝑃𝑉

𝑛−1

] =  

[
 
 
 
 
 
 
 
 
 
1   
0   
0   
0   
0   
0
0
0
⋮
0

0   
1   
0   
0   
0   
0
0
0
⋱
…

0   
0   
𝑐(ℎ)

𝑠(ℎ)
0   
0
0
0

0   
0   

−𝑣𝑠(ℎ)

𝑣𝑐(ℎ)
0   
0
0
0

0   
0   
0   
0   
0   

−𝑣𝑠(ℎ)
𝑣𝑐(ℎ)
0
⋮
0 ]

 
 
 
 
 
 
 
 
 

10∗5

                (4.2) 

From analytical review of O, we say that: 

1. The zero polar velocity (v = 0), yields last two columns to be zeros reducing the 

rank to 3 (which means that there are two states unobservable, that are related to 

the zero columns which are the last two states: the heading angle h and the angle 

change rate 𝜔) 

2. The 3rd and 4th columns are identical if  

a. 𝑐(ℎ) = −𝑣𝑠(ℎ) 
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b. 𝑠(ℎ) =  𝑣𝑐(ℎ) 

𝑤ℎ𝑖𝑐ℎ 𝑦𝑖𝑒𝑙𝑑𝑠 
−𝑐(ℎ)

𝑠(ℎ)
=
𝑠(ℎ)

𝑐(ℎ)

𝑦𝑖𝑒𝑙𝑑𝑠
→    𝑐2(ℎ) + 𝑠2(ℎ) = 0 𝑤ℎ𝑖𝑐ℎ 𝑖𝑠 𝑖𝑚𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 , . Therefore, 

the CT-CTRPV model is observable for all of its state space unless (v = 0). Using 

MATLAB, we numerically examine the observability on the space and the results were 

typical. 

 
Figure (4.1): The observability surface of CT-CTRPV model 

4.2 Observability of CT-CTRA model 

Looking at CT-CTRA model in equation (2.24) in the form 𝑋̇ = 𝑓(𝑋) + 𝑈, we get the 

linearized system matrix 𝐴𝐶𝑇𝑅𝐴  via computing the Jacobean of the state transition 

function𝑓(𝑋) such as 

𝐴𝐶𝑇𝑅𝐴 = |
𝜕𝑓(𝑋)

𝜕𝑋
|
𝑋(𝑡)

= 

[
 
 
 
 
 
0   
0   
0   
0   
0   
0

0   
0   
0   
0   
0   
0

cos(ℎ)

sin(ℎ)
0
0
0
0

0 −𝑣 sin(ℎ)

0 𝑣 cos(ℎ)
1 0
0 0
0 0
0 0

0
0
0
0
1
0]
 
 
 
 
 

                                  (4.3) 

As in CT-CTPRV analysis, 𝐴𝐶𝑇𝑅𝐴depends only on ℎ, 𝑎𝑛𝑑 𝑣. For the linear measurement 

model in equation (3.23) the observability matrix 𝑂 is such as 
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𝑂𝐶𝑇𝑅𝐴  =  [

𝐻
𝐻𝐴𝐶𝑇𝑅𝐴
⋮

𝐻𝐴𝐶𝑇𝑅𝐴
𝑛−1

] =  

[
 
 
 
 
 
 
 
 
 
1   
0   
0   
0   
0   
0
0
0
⋮
0

0   
1   
0   
0   
0   
0
0
0
⋱
…

0   0
0   0
𝑐(ℎ) 0
𝑠(ℎ) 0
0   𝑐(ℎ)

0 𝑠(ℎ)
0 0
0 0
⋮ ⋮
… …

0   
0   

−𝑣𝑠(ℎ)

𝑣𝑐(ℎ)
0   
0
0
0

0   
0   
0   
0   

−𝑣𝑠(ℎ)

𝑣𝑐(ℎ)
0
0
⋮
0 ]

 
 
 
 
 
 
 
 
 

10∗6

                            (4.4) 

From analytical review of  𝑂𝐶𝑇𝑅𝐴,we say that: 

1. The zero polar velocity (v = 0), yields last two columns to be zeros reducing the 

rank to 4 (which means that there are two states unobservable, that are related to 

the zero columns which are the last two states: the heading angle h and the angle 

change rate 𝜔). 

2. The 3rd and 5th columns or the 4th and 6th columns are identical if both 

a. 𝑐(ℎ) = −𝑣𝑠(ℎ) 

b. 𝑠(ℎ) =  𝑣𝑐(ℎ) 

𝑤ℎ𝑖𝑐ℎ 𝑦𝑖𝑒𝑙𝑑𝑠 
−𝑐(ℎ)

𝑠(ℎ)
=
𝑠(ℎ)

𝑐(ℎ)

𝑦𝑖𝑒𝑙𝑑𝑠
→    𝑐2(ℎ) + 𝑠2(ℎ) = 0 𝑤ℎ𝑖𝑐ℎ 𝑖𝑠 𝑖𝑚𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 , Thus, the 

CT-CTRA model is observable for all of its state space unless (v = 0). Using MATLAB, 

we numerically examine the observability on the space and the results were typical. 

 
Figure (4.2): The observability surface of CT-CTRA model 
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4.3 Observability of DT-CTRPV model 

Discrete time CTRPV nonlinear model where the input part seperated from the state 

transition part is 

[
 
 
 
 
𝑥
𝑧
𝑣
ℎ
𝜔]
 
 
 
 

𝑘+1

=

[
 
 
 
 
 
 𝑥 +

2𝑣

𝜔
sin (

𝜔𝑇

2
) cos (ℎ +

𝜔𝑇

2
)

𝑧 +
2𝑣

𝜔
sin (

𝜔𝑇

2
) sin (ℎ +

𝜔𝑇

2
)

𝑣
ℎ + 𝜔𝑇
𝜔 ]

 
 
 
 
 
 

𝑘

+

[
 
 
 
 
0 0
0 0
𝑇 0
0 0
0 𝑇]

 
 
 
 

𝑤𝑘          (4.5) 

By first order linearization, we get the system matrix A via computing the Jacobean of 

the state transition part. 

𝐴 = |
𝜕𝑓(𝑥)

𝜕𝑥
|
𝑥(𝑡)

=  

[
 
 
 
 
 
 
1      
0      
0      
0      
0      

0        
1        
0        
0        
0        

2

𝜔
s (
𝜔𝑇

2
) c (ℎ +

𝜔𝑇

2
)

2

𝜔
s (
𝜔𝑇

2
) s (ℎ +

𝜔𝑇

2
)

1
0
0

−2𝑣

𝜔
s (
𝜔𝑇

2
) s (ℎ +

𝜔𝑇

2
)

2𝑣

𝜔
s (
𝜔𝑇

2
) c (ℎ +

𝜔𝑇

2
)

0
1
0

𝜕𝑥𝑘+1
𝜕𝜔𝑘
𝜕𝑧𝑘+1
𝜕𝜔𝑘
0
𝑇
1 ]

 
 
 
 
 
 

    (4.6) 

Where 

𝜕𝑥𝑘+1
𝜕𝜔𝑘

=
𝑣𝑇

𝜔
𝑐 (
𝜔𝑇

2
) c (ℎ +

𝜔𝑇

2
) −

2𝑣

𝜔2
𝑠 (
𝜔𝑇

2
) c (ℎ +

𝜔𝑇

2
) −

𝑣𝑇

𝜔
𝑠 (
𝜔𝑇

2
) s (ℎ +

𝜔𝑇

2
) 

𝜕𝑧𝑘+1
𝜕𝜔𝑘

=
𝑣𝑇

𝜔
𝑐 (
𝜔𝑇

2
) s (ℎ +

𝜔𝑇

2
) −

2𝑣

𝜔2
𝑠 (
𝜔𝑇

2
) s (ℎ +

𝜔𝑇

2
) +

𝑣𝑇

𝜔
𝑠 (
𝜔𝑇

2
) c (ℎ +

𝜔𝑇

2
) 

It’s clear that the matrices A and O only depends on   𝑣, ℎ, 𝜔, 𝑎𝑛𝑑 𝑇, such that they are 

very complicated to be analyzed mathematically. 

 

Figure (4.3): DT-CTRPV observability surface at 0.1sT, 0 m/s v 
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Thus, we use Matlab for visual examination with fixed T at the nominal sampling time 

(0.1 sec) in KITTI dataset and draw the rank of O as a function of  

heading angle ℎ 𝑓𝑟𝑜𝑚 − 180 to 180 deg , 𝑎𝑛𝑑 𝜔 from -180 to 180 deg/sec for some 

meaningful values of 𝑣 (0 m/s , 10 m/s and 1e+10 m/s). The results are shown in figures 

(4.3 and 4.5). At zero velocity, the observable states are reduced to three that is exactly 

matching the CT-CTRPV analysis. 

 
Figure (4.4): DT-CTRPV observability surface at 0.1 sampling time and 10 m/s polar 

velocity 

 At 10 m/s velocity the model is fully observable in the space of heading angle (-180 

deg to 180 deg), and for large scale angle rate. Since we concern the on-road vehicles 

motion, this range is very good.   

 

Figure (4.5): DT-CTRPV observability surface @ 0.1s T,1e+06 m/s v 
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By increasing the velocity exponentially and drawing the rank of O.  we noticed that the 

model was fully observable in the stated range. Until the velocity reached 5.2e+13 m/s, 

the observable states are reduced to four for  ℎ ∉ [−180°, 15°]. This is because numerical 

errors related to the numbers conditioning in MATLAB; however, on-road vehicles 

motion don’t reach this high velocity. Therefore, the DT model of CTRPV is fully 

observable for all practical state-subspace. 

4.4 Observability of DT-CTRA model 

The discrete time CTRA nonlinear model state transition part is 

[
 
 
 
 
 
𝑥
𝑧
𝑣
𝑎
ℎ
𝜔]
 
 
 
 
 

𝑘+1

=

[
 
 
 
 
 
 
 𝑥 +

1

𝜔2
[(𝑣𝜔 + 𝑎𝜔𝑇)𝑠(ℎ + 𝜔𝑇) + 𝑎 ∗ 𝑐(ℎ + 𝜔𝑇) − 𝑣𝜔𝑠(ℎ) − 𝑎 ∗ c(ℎ)]

𝑧 +
1

𝜔2
[(−𝑣𝜔 − 𝑎𝜔𝑇)𝑐(ℎ + 𝜔𝑇) + 𝑎 ∗ 𝑠(ℎ + 𝜔𝑇) + 𝑣𝜔𝑐(ℎ) − 𝑎 ∗ s(ℎ)]

𝑣 + 𝑎𝑇
𝑎

ℎ + 𝜔𝑇
𝜔 ]

 
 
 
 
 
 
 

𝑘

          (4.7) 

It is very complicated to get the analytical solution for the Jacobean. however, we could 

say analytically that linearized system matrix depends on (𝑣, 𝑎, ℎ, 𝜔, 𝑎𝑛𝑑 𝑇) but doesn’t 

ever depends on the position 𝑥, 𝑧.  

MATLAB is used for numerical computation of the Jacobean and for visual examination.  

Again  fixing T at the nominal sampling time (0.1 sec) in KITTI dataset, then drawing the 

rank of O as a function of  heading angle ℎ 𝑓𝑟𝑜𝑚 − 180 to 180 deg , 𝜔 from -180 to 

180 deg/sec for some meaningful values of 𝑣 (0 m/s , 10 m/s and 1e+06 m/s) and a (0 

m/s2, 10 m/s2and 1e+06 m/s2), the obtained results are shown in Figure (4.6-8). 

 
Figure (4.6): DT-CTRA observability surface @ 0.1s T,0 m/s v,0 m/s2 a 
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AS shown in Figure (4.6) the zero velocity reduces  the observable states to four which is 

exactly matching the CT-CTRA analysis, while from Figure (4.7) and Figure (4.8) , we 

could considered that the DT model of CTRA is fully observable for on-road vehicles 

practical motion range (the velocity less than 2.5e0+7m/s and the acceleration less than 

2.5e0+7m/s2). 

 

 
Figure (4.7): DT-CTRA observability surface @ 0.1s T,10 m/s v,1 m/s2 a 

  
Figure (4.8): DT-CTRA observability surface @ 0.1s T,2. e7 m/s v,2.57e7 m/s2 a 
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4.5 Summary 

The observability property for the proposed approach was inspected in this chapter 

through the analytical and the numerical calculation of the observability matrix O rank. 

Table (4.1) summarizes the results since it depicts the number of observable states by the 

variant models, the unobservable states are stated in {} brackets 

The model 𝑣 = 0 |𝑣| ≫ 0 𝜔 ∈ [−𝜋, 𝜋] 

CT-CTRPV 3 {h,ω} 5 5 

CT-CTRA 4 {h,ω} 6 6 

DT-CTRPV 3 {h,ω} 4 5   

DT-CTRA 4 {h,ω} 5 6 

Table (4.1): The system observability property summary 

It’s found that for nonmoving observed vehicle (𝑣 = 0) all the continuous and discrete 

time models could not estimate the heading and the turn rate. The continuous time models 

are full observable over the rest state space. The discrete time models discretized by  

KITTI dataset sampling time (0.1 s) are full observable for all practical vehicles speeds 

for the observed vehicles turn rate in the range 𝜔 ∈ [−𝜋, 𝜋]𝑟𝑎𝑑/𝑠, also  they are full 

observable for very high speeds that exceeds 1e+6 m/s, that is because through the 

observability test its assumed that the observed vehicle position observations (x, z) are 

available and unlimited, that is could not be achieved by a real stereo vision system 

because its limited range. So, for limited range observations of the observed vehicle 

position the maximum observable speed 𝑣𝑚𝑎𝑥  is limited by the least distance that the 

observed vehicle travel in the stereo vision field of view (FOV) divided by the period 

required for sufficient number of the observed vehicle position observations. 

Figure (4.9) shows that the least distance dist that the observed vehicle could interpret 

through the stereo field of view FOV achieved if the observed vehicle intersects FOV 

perpendicular on stereo z-axis with zero turn rate. From simple triangulation for KITTI 

stereo horizontal FOV of 90 deg the least distance is [𝑑𝑖𝑠𝑡 = 2 ∗ 𝑧], where z represents 

the longitudinal distance of the observed trajectory from the stereo. 
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Figure (4.9): the trajectory of vehicle interpreted the ego stereo FOV 

In order to measure the polar velocity or heading it’s required that the stereo vision system 

could capture at least two position observations which require three time samples at worst 

case, while the measurement of acceleration or turn rate require three captured position 

observations which require four time samples at worst case, so the maximum allowable 

speed for KITTI stereo system is  

𝑣𝑚𝑎𝑥 =
𝑑𝑖𝑠𝑡

4 ∗ 𝑇
=
2 ∗ 𝑧

4 ∗ 0.1
= 5 ∗ 𝑧 

Practically the on-road vehicles maximum speed of 200 km/h could be recognized if the 

observed vehicle inters FOV farther than 11m longitudinally. 
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Chapter 5 

Results and Discussions 

The proposed approach was implemented using MATLAB. The performance of the EKF 

depends mainly on the initial estimated state vector 𝑋̂0|0, initial estimated state covariance 

matrix 𝑃0|0 , the process noise covariance matrix 𝑄 , and the measurement noise 

covariance matrix 𝑅. In the following sections, the results of applying the developed 

models would be shown, the impact of the listed factors would be discussed. The 

evaluation metric of the estimation performance is the root mean square of the estimation 

error. 

5.1 Synthesized Data Set 

The data of the observed vehicle motion were generated using CT-CTRA model, which 

is implemented using Simulink model as shown in figure (5.1).  

 

Figure (5.1): The synthesized data generation simulink model 

The model was excited by the initial conditions, the jerk and the turn acceleration inputs. 

Then, the data of the observed vehicle position 𝑥, 𝑧 were corrupted by predetermined 

additive white noise to be used for the purpose of testing the linear measurement model 

based filters. The nonlinear measurements (the left camera projection and the disparity) 
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were generated using the parameters of our practical stereo vision system (baseline b of 

54 cm, focal length f of 721 pixels, image plane center [𝑥0, 𝑦0] of [610,132] pixels), also 

were corrupted by predetermined additive white noise to be used for the purpose of testing 

the nonlinear measurement model based filters. Data were classified into two categories: 

free motion test data and practical on-road designed situations test data. 

5.1.1 Free motion test data 

In this category, the CT-CTRA model is excited by Gaussian white noise inputs jerk 

~N(0, 𝜎𝐽
2 m/s3) and turn acceleration ~N(0, 𝜎𝛼

2 rad/s2). While the initial states were 

determined arbitrarily, no constraints were assumed on the position, heading, polar 

velocity, acceleration or turn rate, The EKF is provided by the true initial conditions 

𝑋̂0|0, 𝑃0|0, the true model noise characteristics 𝜎𝐽
2, 𝜎𝑎

2, 𝜎𝛼
2, and the true measurement noise 

characteristics 𝜎𝑥
2, 𝜎𝑧

2, 𝜎𝑑
2, 𝜎𝑢𝑙

2 , the initial states could be fully deterministic, partially 

deterministic or fully stochastic. In this section, the performance of the filters with fully 

stochastic initial conditions would be inspected, since it is the more realistic situation, 

interested in the asymptotic convergence of the filter from wrong and far initial states. 

5.1.1.1 Known stochastic initial conditions 

This is the situation where the initial estimate variance 𝑃0|0 is known, but the initial states 

𝑋̂0|0 are unknown, First we inspect the filter performance of the known fully stochastic 

initial conditions for zero initial states, So the initial estimate covariance should be the 

square of the true initial state for DT-CTRPV EKF: 

𝑋̂0|0 = 

[
 
 
 
 
𝑥
𝑧̂
𝑣
ℎ̂
𝜔̂

̂

]
 
 
 
 

0|0

=  

[
 
 
 
 
0
0
0
0
0]
 
 
 
 

 , 𝑃0|0 = 𝑐𝑜𝑣

[
 
 
 
 
𝑥
𝑧̂
𝑣
ℎ̂
𝜔̂

̂

]
 
 
 
 

0|0

= 

[
 
 
 
 
 
𝑥0
2 0 0 0 0

0 𝑧0
2 0 0 0

0 0 𝑣0
2 0 0

0 0 0 ℎ0
2 0

0 0 0 0 𝜔0
2]
 
 
 
 
 

                    (5.1𝑎) 

And for DT-CTRA EKF : 

𝑋̂0|0 = 

[
 
 
 
 
 
𝑥
𝑧̂
𝑣
𝑎
ℎ̂
̂

𝜔̂

̂

]
 
 
 
 
 

0|0

=  

[
 
 
 
 
 
0
0
0
0
0
0]
 
 
 
 
 

 , 𝑃0|0 = 𝑐𝑜𝑣

[
 
 
 
 
𝑥
𝑧̂
𝑣
ℎ̂
𝜔̂

̂

]
 
 
 
 

0|0

= 

[
 
 
 
 
 
 
𝜎𝑥
2 0 0 0 0 0

0 𝜎𝑧
2 0 0 0 0

0 0 𝑣0
2 0 0 0

0 0 0 𝑎0
2 0 0

0 0 0 0 ℎ0
2 0

0 0 0 0 0 𝜔0
2]
 
 
 
 
 
 

        (5.1𝑏) 
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Figure (5.2) shows the filter configuration of known stochastic initial conditions with 

known process, measurement variance and initial conditions of (5.1a) 

 

Figure (5.2): The filter configuration of known stochastic initial conditions with known 

process, measurement variance and initial conditions of (5.1) 

Table (5.1) depicts the RMS estimation error of the distance,𝑣, ℎ, 𝜔 for 250 sec simulation 

time of data generated by CT-CTRA model with initial conditions of 

(𝑥0 ,𝑧0 ,𝑣0, ℎ0, 𝑎0, 𝜔0)  and Gaussian noise jerk, turn acceleration of ~N(0,𝜎𝐽
2  m/s3), 

~N(0,𝜎𝛼
2  rad/s2) provided by the measured position corrupted by Gaussian noise of 

~N(0,𝜎𝑥
2  m),~N(0,𝜎𝑧

2  m/s3), where the empty a row represents CTRPV_EKF results, 

while the nonempty a row represents CTRA_EKF results. 

Table (5.1): The RMS estimation error of CTRPV_EKF, CTRA_EKF with known 

process, measurement variance and initial conditions of (5.1a) 

CT-CTRA synthesizing data model parameters The RMS estimation error 

𝑥0 𝑧0 𝑣0 ℎ0 𝑎0 𝜔0 𝜎𝛼
2 𝜎𝐽

2 𝜎𝑥
2 𝜎𝑧

2 𝜎𝑎
2 𝑑𝑖𝑠𝑡 𝑣 ℎ 𝜔 𝑎

50 50 20 0 2 15 22 22 22 22 31.62 1.8 6.13 5.96 9.04  

50 50 20 0 2 15 22 22 22 22 31.62 1.67 6.12 2.16 7.3 0.43 

 

Figure (5.3)  shows that the estimated trajectories converge to the true trajectory with 

RMS estimation error of 1.8m ,1.67m of CTRPV_EKF, CTRA_EKF respectively.  
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Figure (5.3): Estimated trajectory by EKF configured as in Table (5.1) 

Figure (5.4) shows very good polar velocity estimation with RMS estimation error of 

6.13m/s, 6.12m/s of CTRPV_EKF, CTRA_EKF respectively over the whole estimation 

period (250 seconds). However, the CTRPV converges in 5s while CTRA in 6s. CTRPV 

is biased by about 2.65m/s steady error with less undershoot than CTRA. 

 

Figure (5.4): Estimated polar velocity by EKF configured as in Table (5.1) 

Figure (5.5) shows that the estimated heading by converges to the true heading in less 

than 5 seconds with RMS  RMS estimation error of 5.96 deg, 2.16 deg for CTRPV, CTRA 
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Figure (5.5): Estimated heading by EKF configured as in Table (5.1) 

Figure (5.6) shows that the estimated turn rate converges fluctuating about the true state 

in less than 8 seconds with RMS estimation error of 9.04 deg/s, 7.3 deg/s for CTRPV, 

CTRA respectively. 

 

Figure (5.6): Estimated turn rate by EKF configured as in Table (5.1) 

Figure (5.7) shows the convergence of the filter for the forward acceleration in 5 seconds 

with noise fluctuating about the true with RMS estimation error of 0.43 m/s2 for 250 sec 

simulation due the far initial conditions. 
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Figure (5.7): Estimated acceleration by EKF configured as in Table (5.1) 

The RMS estimation error listed in Table (5.1) doesn’t indicate steady error since all the 

estimated stated converges to true states as shown in figures (5.3-7), the error RMS is 

due to the pre-convergence error caused by the far filter initial conditions and the high 

variance of the excitation. 

Table (5.2) also depicts the RMS estimation error for 250 sec simulation time of data 

generated with the same initial conditions and excitation as in Table (5.1), with variant 

initial heading, where the empty a row represents CTRPV_EKF results, while the 

nonempty a row represents CTRA_EKF results 

Table (5.2): The RMS estimation error of CTRPV_EKF , CTRA_EKF with known 

process and measurement variance and initial conditions of (5.1a,b) for variant initial 

heading  

 

 

 

 

 

As shown in Table (5.1) and Table (5.2) at zero deg and 90 deg initial heading, both 

CTRPV_EKF, CTRA_EKF estimated heading converges only near 0 deg with steady 

error. And both filters at 270 deg initial heading, the filter heading converges with 2 

possibilities near 180 deg with steady error (reverse trap) or near 360 deg steady error, 
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CT-CTRA synthesizing data model parameters The estimation error RMS 

𝑥0 𝑧0 𝑣0 ℎ0 𝑎0 𝜔0 𝜎𝛼
2 𝜎𝐽

2 𝜎𝑥
2 𝜎𝑧

2 𝑑𝑖𝑠𝑡 𝑣 ℎ 𝜔 𝑎 

50 50 20 

90 

2 15 22 22 22 22 

1.7 5.33 3.15 6.3  

1.695 6.03 6.3 9.4 0.327 

270 
1.675 5.8 0.25 6.88  

1.68 6.06 0.1 9.45 0.4 

270 
1.762 5.2 0.35 9.11  

1.89 5.9 0.5 9.7 3.4 
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noting that the reverse estimation trap does not always occur; we could say it has 50% 

chance with the true estimation. 

 

Table (5.3): the RMS estimation error of CTPV_EKF with variant known process and 

measurement variances and initial conditions of (5.1a) 

CT-CTRA synthesizing data model parameters The estimation error RMS 

𝑥0 𝑧0 𝑣0 ℎ0 𝑎0 𝜔0 𝜎𝛼
2 𝜎𝐽

2 𝜎𝑥
2 𝜎𝑧

2 𝜎𝑎
2 𝑑𝑖𝑠𝑡 𝑣 ℎ 𝜔 

50 50 20 90 2 15 22 22 102 102 31.62 3.05 3.531 4.79 8.38 

50 50 20 90 2 15 62 82 22 22 126.52 1.68 5.58 5.92 25.3 

50 50 20 90 2 15 0.12 0.12 22 22 1.852 2.85 6.1 3.13 1.73 

 

The experiments in Table (5.3) presents convergent estimation along all the simulation 

period (250 seconds). It’s clear that the filter is still valid for very high measurement noise 

variance, with increasing estimation error due to increased measurement noise. It’s also 

clear that the filter is still valid for very high excitation inputs noise variance, with 

increasing estimation error due to increased measurement noise such that’s results are the 

more important since it proves the reliability of the estimator for practical high noisy 

excitation of the synthesizing dynamic model dominant in generation the states.  

Table (5.4): The RMS estimation error of CTRA_EKF with variant known process and 

measurement variance and initial conditions of (5.1b) 

 

          

 

 

The experiments in Table (5.4) are convergent estimation along all the simulation period 

(250 seconds). It’s clear that the filter is still valid for very high measurement noise 

variance, with increasing estimation error due to increased measurement noise. It is also 

still valid for very high excitation inputs noise variance with increasing estimation error 

due to increased measurement noise. That results are more important since it proves the 

reliability of the estimator for practical purposes since the high noisy excitation of the 

synthesizing dynamic model dominant in generating the states. The closure of the 

estimation model with the synthesizing model is passed while the estimator is still able to 

converge the true states. 

 

 

CT-CTRA synthesizing data model parameters The estimation error RMS 

𝑥0 𝑧0 𝑣0 ℎ0 𝑎0 𝜔0 𝜎𝛼
2 𝜎𝐽

2 𝜎𝑥
2 𝜎𝑧

2 dist. 𝑣 ℎ 𝜔 𝑎 

50 50 20 90 2 15 22 22 102 102 2.43 1.33 2.74 7.82 0.4 

50 50 20 90 2 15 62 82 22 22 3.35 6.6 7.89 18.26 1.5 

50 50 20 90 2 15 0.12 0.12 22 22 1.4 13.6 4.1 11.5 0.3 
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Reverse Estimation Trap: 

A critical situation of our filter which is called the reverse estimation trap is explained in 

Table (5.5) 

Table (5.5): The RMS estimation error of reverse trapped CTRPV_EKF with known 

process, measurement variance and initial conditions of (5.1a) 

CT-CTRA synthesizing data model parameters The RMS estimation error  

𝑥0 𝑧0 𝑣0 ℎ0 𝑎0 𝜔0 𝜎𝛼
2 𝜎𝐽

2 𝜎𝑥
2 𝜎𝑧

2 𝜎𝑎
2 Dist. 𝑣 ℎ 𝜔 

50 50 20 180 2 15 22 22 22 22 31.62 1.7 148.5 179.85 10.3 

50 50 20 180 2 15 22 22 22 22 31.62 1.75 5.121 8.25 8.88 

since the true initial heading is 180 deg while it was initialized in the filter in opposite 

direction (0 deg), the estimated heading converged to the true heading with shift of -3.14 

rad (-180 deg) in less than 5 seconds as shown in  Figure (5.8). 

 
Figure (5.8): Estimated trajectory by EKF configured as in 1st row of Table (5.5) 

 
Figure (5.9): Estimated polar velocity by EKF configured as in 1st row of Table (5.5) 
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While the estimated velocity converges to minus the true velocity in less than 4 seconds 

as in Figure (5.9) and in Table (5.5). The rms of the estimation error is 148.5 m/s for the 

estimated but the rms for the minus estimated is 6.2 m/s, which is not steady estimation 

error since the estimation error dies but is generated in the first 4 seconds.  

The position trajectory converges in 2 seconds with rms of 1.7 m for 250 sec simulation 

time, the reverse estimation trap for CTRA_EKF is illustrated in 1st row of Table (5.6). 

Table (5.6): The RMS estimation error of reverse trapped CTRA_EKF with known 

process, measurement variance and initial conditions of (5.1b) 

CT-CTRA synthesizing data model parameters The estimation error RMS 

𝑥0 𝑧0 𝑣0 ℎ0 𝑎0 𝜔0 𝜎𝛼
2 𝜎𝐽

2 𝜎𝑥
2 𝜎𝑧

2 Dist. 𝑣 ℎ 𝜔 𝑎 

50 50 20 180 2 15 22 22 22 22 1.67 496.63 180 6.3 3.13 

50 50 20 180 2 15 22 22 22 22 1.71 5.481 8.4 8.7 0.347 

 

since the true inital heading is 180 deg while it was initialized in the filter in opposite 

direction (0 deg), the estimated heading in less than 2 seconds converged to the true 

heading with shift of -179.85 deg (-3.139 rad). That is the rms of the estimation error for 

250 sec simulation time as shown in Figure (5.10).  

 
Figure (5.10): Estimated heading by EKF configured as in 1st row of Table (5.6) 

The estimated velocity converges to minus the true velocity in less than 4 seconds as in 

Figure (5.11). Table (5.6) shows the rms of the estimation error as 496.63 m/s while the 

rms for the minus estimated is 7.606 m/s, which is not steady estimation error since the 

estimation error dies but is generated after the first 2 seconds.  Thus, it is concluded that 

it is faster than CTRPV convergence. 
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Figure (5.11): Estimated polar velocity by EKF configured as in 1st row of Table (5.6) 

Also, the estimated acceleration converges to minus the true acceleration in 7 seconds as 

in Figure (5.12). Table (5.6) shows the rms of the estimation error is 3.13 m/s2 while the 

rms for the minus estimated is 0.33 m/s2. There is noise about true acceleration 

 
Figure (5.12): Estimated acceleration by EKF configured as in 1st row of Table (5.6) 

The position trajectory converges in less than1.5 seconds with rms of 1.6704 m for 250 

sec simulation time. 

Its concluded that for known fully stochastic initial conditions with zero initial 

state estimate and known noise characteristics, the CTRPV-EKF converges very quickly 

(in 6 seconds at worst case) to the true states of the system. Noting that the estimated 

heading surely converges to the true heading or the true heading shifted by (pi rad) (the 

reverse direction) because of the farness of the initial estimates. If we have a near initial 

heading estimate, it would converge to the true heading without any shift. 
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5.1.1.2 Unknown stochastic initial conditions 

In this case the filters have no information about the true initial states of the system model 

but have a knowledge of the system model and measurement noise characteristics. Thus, 

the filter performance is inspected with deterministic zero states initialization and 

deterministic zero states with the mechanical limits uncertainty initialization. 

5.1.1.2.1 Zero initial conditions 

The deterministic zero states initialization of the CTRPV-EKF filter are: 

𝑋̂0|0 = 

[
 
 
 
 
𝑥
𝑧̂
𝑣
ℎ̂
𝜔̂

̂

]
 
 
 
 

0|0

=

[
 
 
 
 
0
0
0
0
0]
 
 
 
 

     , 𝑃0|0 = 𝑐𝑜𝑣

[
 
 
 
 
𝑥
𝑧̂
𝑣
ℎ̂
𝜔̂

̂

]
 
 
 
 

0|0

= 

[
 
 
 
 
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0]

 
 
 
 

                   (5.2𝑎) 

The deterministic zero states initialization of the CTRA-EKF filter are: 

𝑋̂0|0 = 

[
 
 
 
 
 
𝑥
𝑧̂
𝑣
𝑎̂
ℎ̂
𝜔̂

̂

]
 
 
 
 
 

0|0

=

[
 
 
 
 
 
0
0
0
0
0
0]
 
 
 
 
 

     , 𝑃0|0 = 𝑐𝑜𝑣

[
 
 
 
 
 
𝑥
𝑧̂
𝑣
𝑎̂
ℎ̂
𝜔̂

̂

]
 
 
 
 
 

0|0

= 

[
 
 
 
 
 
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0]

 
 
 
 
 

         (5.2𝑏) 

 

Figure (5.13) shows the filter configuration of zero deterministic initial conditions with 

known process, measurement variance and initial conditions of (5.2) 

 

Figure (5.13): The filter configuration of zero deterministic initial conditions with 

known process, measurement variance and initial conditions of (5.2) 

Table (5.7) inspects the performance of the deterministic zero states initialized CTRPV-

EKF and CTRA-EKF for data generated by CT-CTRA model with zero initial conditions 
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and Gaussian noise jerk, turn acceleration of ~N(0,𝜎𝐽
2 m/s3), ~N(0,𝜎𝛼

2 rad/s2) provided by 

the measured position corrupted by Gaussian noise of ~N(0,𝜎𝑥
2 m),~N(0,𝜎𝑧

2 m/s3), the 

RMS estimation error for 250 sec simulation time, where the empty a row represents 

CTRPV_EKF results, while the nonempty a row represents CTRA_EKF results. 

Table (5.7): The RMS estimation error of CTRPV_EKF, CTRA_EKF with known 

variant process and measurement variance and initial conditions of (5.2a, b) 

CT-CTRA synthesizing data model parameters The estimation error RMS 

𝑥0 𝑧0 𝑣0 ℎ0 𝑎0 𝜔0 𝜎𝛼
2 𝜎𝐽

2 𝜎𝑥
2 𝜎𝑧

2 𝑑𝑖𝑠𝑡 𝑣 ℎ 𝜔 𝑎 

0 0 0 0 0 0 32 32 32 32 
1.1 1.48 6.27 11.97  

0.79 0.94 5.96 11.88 0.4 

0 0 0 0 0 0 32 32 32 32 
1.59 1.9 6.4 13.4  

0.84 1.2 2.1 11.3 4.65 

0 0 0 0 0 0 1 1 32 32 
1.4 1.82 18.6 6.9  

0.63 0.3 10.3 6.2 0.16 

0 0 0 0 0 0 32 32 1 1 
0.69 2.23 4.6 9.37  

0.35 0.63 4.82 9.3 0.44 

 

For the zero initial states case, the initialization of the filters is matched with chance for 

trapped by reverse estimation by both filters. The estimation error’s RMS is very low 

for the two filters. It’s also noted that the CTRA-EKF estimation is closer to the true 

states than CTRPV-EKF especially the position trajectory and the polar velocity. In the 

2nd row, the filters were trapped in reverse estimation, rms of minus v for CTRA is 

0.9372 m/s, while rms of minus v for CTRPV is 3.1645 m/s. 

Table (5.8): The RMS estimation error of CTRPV_EKF, CTRA_EKF with known 

process and measurement variance and initial conditions of (5.2a, b) 

 

 

 

 

 

Table (5.8) inspects the performance of the deterministic zero states initialization of 

CTRPV-EKF and CTRA-EKF for non zero initial conditions CT_CTRA generated data, 

figure (5.14) shows very good trajectory estimation over the whole estimation period (250 

seconds) with distance error rms of 6.69 m, 6.47 m for CTRPV-EKF, CTRA-EKF 

respectively. To remove the pre-convergence error, the rms of the estimation error at the 

period from 15s to 250s is found 4.6562m, 0.8599 m for CTRPV-EKF, CTRA-EKF 

respectively so the CTRA is better in terms of steady error by 3.7963 m. 

CT-CTRA synthesizing data model parameters The estimation error RMS 

𝑥0 𝑧0 𝑣0 ℎ0 𝑎0 𝜔0 𝜎𝛼
2 𝜎𝐽

2 𝜎𝑥
2 𝜎𝑧

2 𝑑𝑖𝑠𝑡 𝑣 ℎ 𝜔 𝑎 

10 10 5 45 0.5 3 0.052 0.12 0.82 1.52 
6.69 2.45 5.82 1.56  

6.47 2.96 10.28 2.64 0.596 
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Figure (5.14): Estimated trajectory by EKF configured as in Table (5.8) 

The CTRPV is faster convergent than CTRA with less overshoot for the position 

trajectory. Figure (5.15) shows very good heading angle estimation with RMS estimation 

error of 5.82 deg, 10.28 deg for CTRPV-EKF, CTRA-EKF respectively over the whole 

estimation period (250 seconds). That doesn’t imply that CTRA-EKF is worse than 

CTRPV-EKF by 4.46 deg steady error. To remove the pre-convergence error, the rms of 

the estimation error at the period from 30s to 250s is computed as 0.9413 deg, 0.2412 deg 

for CTRPV-EKF, CTRA-EKF respectively.  The CTRA is better in terms of steady error 

by 0.7001deg. However, the CTRPV is faster convergent than CTRA with less overshoot 

for the heading as in Figure (5.15) 

 
Figure (5.15): Estimated heading by EKF configured as in Table (5.8) 
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Figure (5.16) shows a very good polar velocity estimation with RMS estimation error of 

2.45 m/s, 2.96 m/s for CTRPV-EKF, CTRA-EKF respectively over the whole estimation 

period (250 seconds). However, the CTRPV is faster convergent than CTRA with less 

overshoot but CTRPV is biased by steady error of 2.3926 m/s that is the rms of the 

estimation error at the period from 30s to 250s for CTRPV-EKF, while it was 0.1058 m/s 

for CTRA-EKF. 

 
Figure (5.16): Estimated polar velocity by EKF configured as in Table (5.8) 

Figure (5.17) is the estimation plot that shows very good turn rate estimation with error 

rms of 1.56 deg/s and 2.64 deg/s for CTRPV-EKF and CTRA-EKF respectively over the 

whole estimation period (250 seconds). To remove the pre-convergence error, the rms of 

the estimation error at the period from 30s to 250s is computed 0.393 deg/s and 0.31 deg/s.  

Then, the CTRPV is faster convergent than CTRA with less overshoot as shown in Figure 

(5.17). 

 
Figure (5.17): Estimated turn rate by EKF configured as in Table (5.8) 
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remove the pre-convergence error, the rms of the estimation error at the period from 30s 

to 250s which is compute as 0.029 m/s2. 

 
Figure (5.18): Estimated acceleration by EKF configured as in Table (5.8) 

Table (5.9) shows that the filters converge well for wide range of the true initial states on 

the assumption of deterministic zero initial states, where the empty a row represents 

CTRPV_EKF results, while the nonempty a row represents CTRA_EKF results. 

Table (5.9): The RMS estimation error of CTRPV_EKF, CTRA_EKF with variant 

known process, measurement variance and initial conditions of (5.2a, b) 

CT-CTRA synthesizing data model parameters The estimation error RMS 

𝑥0 𝑧0 𝑣0 ℎ0 𝑎0 𝜔0 𝜎𝛼
2 𝜎𝐽

2 𝜎𝑥
2 𝜎𝑧

2 𝑑𝑖𝑠𝑡 𝑣 ℎ 𝜔 𝑎 

100 100 100 90 10 10 1 1 32 32 
24.03 20.5 8.98 31.5  

27.23 36.4 12.5 35 5.59 

100 100 100 90 10 10 32 32 32 32 
15.3 16 1.8 53  

5.48 5.65 0.6 9.85 1.08 

100 100 100 90 -10 -10 32 32 32 32 
15.4 20.3 13.4 6.23  

19.4 23.25 15.6 9.05 16.1 

 

Its found that it tends to diverge for far true initial states, and when  𝜎𝑥
2 𝑎𝑛𝑑 𝜎𝑧

2 are less 

than 𝜎𝛼
2 𝑎𝑛𝑑 𝜎𝐽

2.  

Its concluded that the deterministic zero states initialization is critical convergent 

since its stability is very sensitive for the farness of the true initial states, the system model 

noise, the measurement noise, and the system model noise to the measurement noise ratio. 

The CTRA-EKF also still proves its dominant performance especially in reduction of 

steady bias in the estimation of the position trajectory and the polar velocity. 

5.1.1.2.2 Mechanical limitations based initial conditions 

In theory, the goal of a proper stochastic model may appear to accurately model the 

specific types of uncertainty that exist in the system actuation and perception. Many of 
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the models that have proven most successful in practical applications vastly overestimate 

the amount of uncertainty. By doing so, the resulting algorithms are more robust to 

violations of the Markov assumptions, such as unmodeled state and the effect of 

algorithmic approximations (THRUN, Sebastian, 2005). Practically the on-road vehicles 

motion is mechanically limited according to the structure and the physical properties of 

its components, so its initial states are surely limited such that we could assume zero 

initial states with covariance of the square of the mechanical limits of the vehicle as the 

following for CTRPV 

𝑋̂0|0 = 

[
 
 
 
 
𝑥
𝑧̂
𝑣̂
ℎ̂
𝜔̂

̂

]
 
 
 
 

0|0

= 

[
 
 
 
 
0
0
0
0
0]
 
 
 
 

, 𝑃0|0 = 𝑐𝑜𝑣

[
 
 
 
 
𝑥
𝑧̂
𝑣̂
ℎ̂
𝜔̂

̂

]
 
 
 
 

0|0

= 

[
 
 
 
 
 
𝑥𝑙𝑖𝑚
2 0 0 0 0

0 𝑧𝑙𝑖𝑚
2 0 0 0

0 0 𝑣𝑙𝑖𝑚
2 0 0

0 0 0 ℎ𝑙𝑖𝑚
2 0

0 0 0 0 𝜔𝑙𝑖𝑚
2 ]
 
 
 
 
 

    (5.3𝑎) 

 

For CTRA 

𝑋̂0|0 = 

[
 
 
 
 
 
𝑥
𝑧̂
𝑣̂
𝑎̂
ℎ̂
𝜔̂

̂

]
 
 
 
 
 

0|0

= 

[
 
 
 
 
 
0
0
0
0
0
0]
 
 
 
 
 

, 𝑃0|0 = 𝑐𝑜𝑣

[
 
 
 
 
 
𝑥
𝑧̂
𝑣̂
𝑎̂
ℎ̂
𝜔̂

̂

]
 
 
 
 
 

0|0 [
 
 
 
 
 
 
𝑥𝑙𝑖𝑚
2 0 0 0 0 0

0 𝑧𝑙𝑖𝑚
2 0 0 0 0

0 0 𝑣𝑙𝑖𝑚
2 0 0 0

0 0 0 𝑎𝑙𝑖𝑚
2 0 0

0 0 0 0 ℎ𝑙𝑖𝑚
2 0

0 0 0 0 0 𝜔𝑙𝑖𝑚
2 ]
 
 
 
 
 
 

     (5.3𝑏) 

 

Figure (5.19) shows the filter configuration of mechanically limited initial conditions with 

known process, measurement variance and initial conditions of (5.3) 

 

Figure (5.19): The filter configuration of mechanically limited initial conditions with 

known process, measurement variance and initial conditions of (5.3) 
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Assuming that 𝑥𝑙𝑖𝑚
2 = 𝑧𝑙𝑖𝑚

2 = 100 𝑚𝑒𝑡𝑒𝑟 that is the longest distant could be efficiently 

recognized by the stereo system  𝑣𝑙𝑖𝑚
2 = 200

𝑘𝑚

ℎ
= 55.62

𝑚

𝑠
 that is the maximum velocity 

of the observed vehicle. While assuming the vehicle motor could drive its velocity from 

0 to 200 km/h in 3 seconds such  𝑎𝑙𝑖𝑚
2 = (

55.6

3
)
2

= 343.5
𝑚

𝑠2
, it’s reasonable to set ℎ𝑙𝑖𝑚

2 =

𝜋2𝑟𝑎𝑑 =  9.8696 𝑟𝑎𝑑. Since assuming that the steering could drive the turn rate to 90 

deg/s, so 𝜔𝑙𝑖𝑚
2 = (

𝜋

2
)
2

𝑟𝑎𝑑/𝑠 =  2.4674 𝑟𝑎𝑑/𝑠 , , where the empty a row represents 

CTRPV_EKF results, while the nonempty a row represents CTRA_EKF results. 

Table (5.10) inspects the performance of the mechanically limited full stochastic 

initialization of CTRPV and CTRA-EKF for zero initial state of the generation data 

model, where the empty a row represents CTRPV_EKF results, while the nonempty a 

row represents CTRA_EKF results. 

Table (5.10): The RMS estimation error of CTRPV_EKF, CTRA_EKF with variant 

known process, measurement variance and initial conditions of (5.3a, b) 

CT-CTRA synthesizing data model parameters The RMS estimation error  

𝑥0 𝑧0 𝑣0 ℎ0 𝑎0 𝜔0 𝜎𝛼
2 𝜎𝐽

2 𝜎𝑥
2 𝜎𝑧

2 𝑑𝑖𝑠𝑡 𝑣 ℎ 𝜔 𝑎 

0 0 0 0 0 0 32 32 32 32 
1.25 2.36 13.4 12.7  

0.88 1.07 10.9 12.24 0.73 

0 0 0 0 0 0 32 32 32 32 
1.11 165.7 1944 47.6  

0.82 165.8 534.8 20.9 2.53 

 

The RMS estimation error is very low for the both filters since the filters initial states 

match the true initial states. the CTRA-EKF estimation is more accurate than CTRPV-

EKF especially the position trajectory and the polar velocity, with chance for trapped by 

reverse estimation for both filters. In the 2nd row, RMS of reversed estimated −𝑣 for 

CTRA is 1.124 m/s, while in CTRPV is 2.25 m/s. 

Table (5.11): The RMS estimation error of CTRPV_EKF, CTRA_EKF with variant 

known process, measurement variance and initial conditions of (5.3a, b) 

CT-CTRA synthesizing data model parameters The RMS estimation error  

𝑥0 𝑧0 𝑣0 ℎ0 𝑎0 𝜔0 𝜎𝛼
2 𝜎𝐽

2 𝜎𝑥
2 𝜎𝑧

2 𝑑𝑖𝑠𝑡 𝑣 ℎ 𝜔 𝑎 

10 10 5 45 0.5 3 0.052 0.12 0.82 1.52 
3.01 1.57 359.6 7.6  

2.65 1.37 8.63 1.5 0.29 

50 -75 35 45 9 45 32 32 32 32 
4.96 9.2 2.96 8.57  

2.47 3.68 2.24 8.92 1.26 

-50 75 -35 -45 -9 -45 32 32 32 32 
5.72 11.3 2.86 9.05  

2.1 2.05 2.48 9.99 1.05 

100 100 55.6 180 18.5 90 12 12 12 12 
10.7 20.4 362.1 9.19  

4.4 7.68 359.96 11 2.75 
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For far nonzero initial states in  

Table (5.11) in the 2nd and 3rd rows both filters demonstrate good estimation results with 

low RMS estimation error larger than twice the RMS of, where the empty a row represents 

CTRPV_EKF results, while the nonempty a row represents CTRA_EKF results. 

Table (5.10). The results in the 1st row shows very good trajectory estimation over the 

whole estimation period (250 seconds) with distance error rms of 3.01 m, 2.65 m for 

CTRPV, CTRA-EKF respectively, indicating that CTRA-EKF is better than CTRPV-

EKF by 0.36 m. To remove the pre-convergence error, the RMS estimation error at the 

period from 15s to 250s is computed as 2.4393 m and 0.3 m for CTRPV and CTRA-EKF 

respectively. Thus, the CTRA is better in terms of steady error by 2.1393m. The CTRPV 

is faster convergent than CTRA with less overshoot for the position trajectory as in Figure 

(5.20). 

 
Figure (5.20): Convergence of estimated trajectory by EKF configured as in Table 

(5.11) 
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Figure (5.21) shows very good heading angle estimation with RMS estimation error of 

359.6 deg and 8.63deg for CTRPV and CTRA-EKF respectively over the whole 

estimation period (250 seconds). To remove the pre-convergence error, the RMS 

estimation error at the period from 30s to 250s was compute as (359.74 = 0.26 deg) and 

0.274 deg for CTRPV-EKF and CTRA-EKF respectively.  The CTRA shows better 

steady error by 0.0119 deg. However, the CTRPV shows faster convergent than CTRA 

with more overshoot for the heading. 

 
Figure (5.21): Estimated heading by EKF configured as in Table (5.11) 

Figure (5.22) shows very good polar velocity estimation with RMS estimation error of 

1.57m/s and 1.37 m/s for CTRPV-EKF and CTRA-EKF respectively over the whole 

estimation period (250 seconds). However, the CTRPV shows faster convergent than 

CTRA with less overshoot. CTRPV is biased by steady error of 1.5584 m/s that is the 

RMS estimation error at the period from 30s to 250s for CTRPV-EKF, while it was 

0.0636m/s for CTRA-EKF. 

 
Figure (5.22): Estimated polar velocity by EKF configured as in Table (5.11) 
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Figure (5.23) shows very good turn rate estimation with error rms of 7.6 deg/s and 1.5 

deg/s for CTRPV-EKF and CTRA-EKF respectively over the whole estimation period 

(250 seconds). To remove the pre-convergence error, the RMS estimation error at the 

period from 30s to 250s was computed as 0.3699 deg/s and 0.3137 deg/s. The CTRPV 

shows faster convergent than CTRA with more overshoot. 

 
Figure (5.23): Estimated turn rate by EKF configured as in Table (5.11) 

CTRA has the capability of the forward acceleration estimation as in Figure (5.24) with 

RMS estimation error of 0.29 m/s2 over the whole estimation period (250 seconds). To 

remove the pre-convergence error, the RMS estimation error at the period from 30s to 

250s was compute as 0.0195 m/s2. 

 
Figure (5.24): Estimated acceleration by EKF configured as in Table (5.11) 
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Its found that the stochastic zero initial states with variance of the mechanical limitations 

based filters always converges to the true states, independent of the generation of the 

random jerk and turn acceleration. 

Mechanical limited stochastic zero states initialization is clearly reliable 

convergent. The CTRA-EKF still proves its dominant performance especially for 

reduction of steady bias in the estimation of the position trajectory and the polar velocity. 

5.1.2 On-road practical designed situations 

In this category the motion of the observed vehicle is designed to simulate real situations 

of the on-road environment, by accurately choosing the model initial states and predefined 

jerk and turn acceleration function of time that achieve the desired motion. 

So, the two major practical challenges should be faced, the first is that the period of 

capturing the observed vehicle through the stereo vision system is tiny doesn’t succeeds 

few second because of the limited field of view of the stereo system (90 deg typically), 

and the limited recognized distance by the stereo vision system (typically 150 meters 

since there are not zoom), this problem needs fast convergent estimator before the vehicle 

departures the image plane. The second challenge is the accurate characterization of the 

exciting inputs  𝐽(𝑡), 𝑎(𝑡), 𝛼(𝑡) that fits our filters process noise variances such that is the 

closest   

𝐽(𝑡)=~N(0,𝜎𝐽
2 m/s3),𝑎(𝑡)=~N(0,𝜎𝑎

2 m/s2), 𝛼(𝑡) =~N(0,𝜎𝛼
2 rad/s2) 

For this aspect its would be discussed how to derive the maximum model variances 

through the analysis of mechanical limitation of the motion based on the assumption in 

the previous section, In order to compute the maximum 𝜎𝐽
2, 𝜎𝑎

2, its needed to capture the 

maximum  positive and negative jerks and accelerations that mechanically achievable, 

one way to do it is to force the vehicle to achieve its acceleration limit (
55.6

3
)𝑚/𝑠2 

assharpest impulse as it could do, which could be approximated by gaussian function (3.4) 

in Figure (5.25) 

𝑎(𝑡) =  𝑎𝑙𝑖𝑚. 𝑒
−(𝑡−𝑐)2

2𝛿2 ∶ 𝑎𝑙𝑖𝑚 =
55.6

3
, 𝛿 = 0.5, 𝑐 = 5                             (3.4) 
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Figure (5.25): the sharpest max. achievable acceleration as in equation (3.4) 

So 𝜎𝑎
2 = 𝑣𝑎𝑟[𝑎(𝑡)] = 24.85 𝑚/𝑠2as computed numerically by MATLAB Thus, the 

jerk in Figure (5.26)  with computed variance 𝜎𝐽
2 = 61m/s3 

 
Figure (5.26): the time derivative of the acceleration in equation (3.4) 

Similarly, in order to compute the maximum turn acceleration variance, it’s necessary to 

capture the turn rate that the car could achieve its maximum turn rate as sharpest impulse 

which could be assumed as gaussian function (3.5) in Figure (5.27). 

𝜔(𝑡) =  𝜔𝑙𝑖𝑚 ∗ 𝑒
−(𝑡−𝑐)2

2𝛿2 ∶ 𝛿 = 0.5, 𝑐 = 5                               (3.5) 

 
Figure (5.27): the sharpest max. achievable turn rate as in equation (3.5) 

Thus, the turn acceleration function is in Figure (5.28) with variance of 𝜎𝛼
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Figure (5.28): the time derivative of the turn rate as in equation (3.5) 

So, the mechanically limited max. process variances for both filters are computed, and 

will the filters with max. process variances performance is inspected. Figure (5.29) shows 

the filter configuration of mechanically limited initial conditions of (5.3) with known 

measurement variance and unknown process variance.  

 

 

Figure (5. 29): The filter configuration of designed practical situation 
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, and zero 𝜔0, 𝑎0, then it 
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Figure (5.30) 
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Figure (5.30): the exciting turn rate acceleration for left turning situation 

The variance of the applied turn rate acceleration in figure (5.29) is computed numerically 

as 𝜎𝛼
2 = 0.029 𝑟𝑎𝑑/𝑠2that is very small relative to the maximum mechanical that was 

computed in the previous section as 1.087 𝑟𝑎𝑑/𝑠2 , and since the exciting jerk is zero, 

and the velocity is constant, so the actual variances 𝜎𝐽
2, 𝜎𝑎

2 = 0, so the difficulty that is 

facing the estimators is high, the position measurement is corrupted by gaussian noise of 

𝜎𝑥
2,𝜎𝑧

2 = 0.2 m, both filters are initialized by mechanical limits as in the previous section, 

with the maximum process variances, Table (5.12) shows the RMS estimation error for 

different 10 seconds simulation periods. 

Table (5.12): the RMS estimation error of CTRPV, CTRA_EKF with known 

measurement variance, unknown process variance and initial conditions of (5.3a, b) 

EKF process covariance Sim. 

period 

The RMS estimation error  

𝜎𝛼
2 𝜎𝐽

2 𝜎𝑎
2 𝑑𝑖𝑠𝑡 𝑣 ℎ 𝜔 𝑎 

1.087 
 548 10 3.52 1.6 2.35 11.5  

61  10 3.52 1.87 3.23 5.9 1.1 

The following figures shows the estimated states 
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Figure (5.31): Estimated trajectory for left turning situation 

In Figure (5.31), although both filters start from (0,0) position which is far from the true 

position they quickly capture the true trajectory with 3.52m distance error RMS for 

both.  

 
Figure (5.32): Estimated heading for left turning situation 

Figure (5.32) shows good heading angle estimation by both filters, from Table (5.12) 

CTRA estimated heading converges to the true heading with RMS of 2.35deg, while 

CTRPV converges to the true heading with RMS of 3.23 deg, the polar velocity estimation 

in Figure (5.33),  
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Figure (5.33): Estimated polar velocity for left turning situation 

The estimated turn rate is plotted in Figure (5.34) shows alike performance of the 

CTRA-EKF although its rms is 5.9 rad/s while for CTRPV-EKF is 11.5 rad/s 

 
Figure (5.34): Estimated turn rate for left turning situation 

The estimated acceleration in Figure (5.35) converges with rms of 1.1 m/s. 

 
Figure (5.35): Estimated acceleration for left turning situation 

Its concluded that for left turning situation both filters initialized by mechanical 

limited stochastic initial conditions and maximum process variances converges well and 

quickly with fluctuating because the process variances are too high from the true exciting 

inputs. 
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5.1.2.2 oncoming vehicle 

This situation simulates straight oncoming vehicle ego from (𝑥0, 𝑧0) = (−5𝑚, 100𝑚) 

move towards the ego parallel to the  negative ego z-axis  with ℎ0 = 270 𝑑𝑒𝑔, 𝑣0 = 10
𝑚

𝑠
, 

and zero 𝜔0, 𝑎0, then it with zero exciting jerk, constant velocity and zero exciting turn 

rate, so the actual variances 𝜎𝛼
2, 𝜎𝐽

2, 𝜎𝑎
2 = 0 that is very small relative to the maximum 

mechanical variances, so it shows you how the difficulty is that facing the estimators, the 

position measurement is corrupted by gaussian noise of𝜎𝑥
2,𝜎𝑧

2 = 0.2 m. The two filters are 

initialized by mechanical limits as in the previous section, with the maximum process 

variances, the following Table (5.13) shows the RMS of the estimation error for different 

simulation periods. 

Table (5.13): the RMS estimation error of CTRPV, CTRA_EKF with known 

measurement variance, unknown process variance and initial conditions of (5.3a, b) for 

oncoming vehicle situation 

EKF process covariance Sim time The RMS estimation error  

𝜎𝛼
2 𝜎𝐽

2 𝜎𝑎
2 𝑑𝑖𝑠𝑡 𝑣, (−𝑣) ℎ 𝜔 𝑎 

1.087 
 548 

50 
8.95 1.197 718.7 9.4  

61  8.95 1.23 718.6 6.7 7.2 

1.087 
 548 

20 
14.15 19.84 (1.4845) 185.4 16.95  

61  14.15 2.15 362.4 7.7 6.13 

1.087 
 548 

5 
28.3 19.5 (2.19) 1228 18.3  

61  28.3 2.24 708 4.42 3.95 

It’s clear that the longer simulation periods have less RMS estimation error because it’s 

enough for convergence The following figures for 5seconds simulation 
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Figure (5.36): Estimated trajectory for oncoming vehicle situation 

In Figure (5.36) although both filters start from (0,0) position which is far from the true 

position they quickly capture the true trajectory,  

 
Figure (5.37): Estimated heading for oncoming vehicle situation 

In Figure (5.37) CTRA estimated heading converges to 270.1 deg (990.1 deg), while 

CTRPV converges to 89.2deg (1529.2 deg) trapped by reverse motion estimatin, as clear 
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from the polar velocity estimation in Figure (5.38),  

 

Figure (5.38): Estimated polar velocity for oncoming vehicle situation 

The estimated turn rate is plotted in Figure (5.39) shows dominant performance of the 

CTRA-EKF since its rms is 4.42 rad/s while for CTRPV-EKF is 18.3 rad/s

 

Figure (5.39): Estimated turn rate for oncoming vehicle situation 

The estimated acceleration is plotted in Figure (5.40) with rms of 3.95 m/s. 
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Figure (5.40): Estimated acceleration for oncoming vehicle situation 

Its concluded that for oncoming vehicle situation both filters initialized by 

mechanical limited stochastic initial conditions and maximum process variances 

converges well and quickly with chance of reverse estimation trap and fluctuating because 

the process variances are too high from the true exciting inputs. 

5.2 KITTI real dataset 

The proposed estimators is applied on sample dataset from KITTI dataset represent real 

on-road situations for the purpose of the inspection of the reliability of the proposed 

estimation EKFs and the evaluation of its performance in realistic situations. 

As explained in sections 3.3.1 and 3.3.2 the reference data is extracted from the velodyne 

laser scanner (x, y, rz) from the tracklet for the 1st dataset, but manually for the 2ndapplying 

the necessary processing like transformation from the observed vehicle the centroid to the 

rear or front center according the visible scene of the car equations (3.26-28, and 

transformation from laser scanner coordinates into the left camera coordinates, equations 

(3.29). 

I prepare the stereo observations through finding manually the projection of the rear or 

front center point of the car in the left camera (ul, vl), using the disparity function by 

MATLAB to find its disparity (d) with the right camera, so we use (ul, d) to extract the 

measured (x, z) and applying the proposed filters. This test data classified in road category 

by KITTI, under the name of (2011_09_26_drive_0029) in (1.7 GB), it consists of 436 

frames in period of (00:43 minutes) with image resolution of 1392 x 512 pixels, it captures 

3 Cars, and , 1 Trucks, we interested the second car captured in frames 118 to 172 in 54 
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frames (00:54 minute), such that the observed vehicle is black Skoda that pass the ego 

from right straight forward in the same road faster than the ego, as in Figure (5.41) 

 
Figure (5.41): four picked frames from test no.1 scenario 

The mechanically limited full stochastic initialization in equations (3.3a, b) is used, for 

𝑥𝑙𝑖𝑚
2 , 𝑧𝑙𝑖𝑚

2 = 502𝑚, 𝑣𝑙𝑖𝑚
2 = 502𝑚/𝑠, ℎ𝑙𝑖𝑚

2 = 𝜋2𝑟𝑎𝑑, ℎ𝑙𝑖𝑚
2 = (

𝜋

2
)
2

𝑟𝑎𝑑/𝑠, 𝑎𝑙𝑖𝑚
2 =

18.532𝑚/𝑠2 , the linear measurement model noise variance assumed stationary was 

computed as the variance of difference between the stereo vision measures and the 

velodyne measures 

  𝜎𝑥
2 = 𝑣𝑎𝑟[𝑥𝑠𝑡𝑒𝑟𝑒𝑜 − 𝑥𝑣𝑒𝑙𝑜𝑑𝑦𝑛𝑒] = 0.029 𝑚, 

𝜎𝑧
2 = 𝑣𝑎𝑟[𝑧𝑠𝑡𝑒𝑟𝑒𝑜 − 𝑧𝑣𝑒𝑙𝑜𝑑𝑦𝑛𝑒] =  7.568 𝑚                                          (5.6) 

Figure (5.42) plots 𝑥𝑠𝑡𝑒𝑟𝑒𝑜, 𝑥𝑣𝑒𝑙𝑜𝑑𝑦𝑛𝑒 , 𝑧𝑠𝑡𝑒𝑟𝑒𝑜, 𝑧𝑣𝑒𝑙𝑜𝑑𝑦𝑛𝑒 for test no.1 data 
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Figure (5.42): 𝑥𝑠𝑡𝑒𝑟𝑒𝑜, 𝑥𝑣𝑒𝑙𝑜𝑑𝑦𝑛𝑒 , 𝑧𝑠𝑡𝑒𝑟𝑒𝑜, 𝑧𝑣𝑒𝑙𝑜𝑑𝑦𝑛𝑒 for test no.1 vs. frames 

the nonlinear measurement model noise variances 𝜎𝑢𝑙
2 , 𝜎𝑑

2 was computed as the variance 

of difference between the stereo vision measures and the velodyne measures 

𝜎𝑈𝐿
2 = 𝑣𝑎𝑟[𝑈𝐿𝑠𝑡𝑒𝑟𝑒𝑜 − 𝑈𝐿𝑣𝑒𝑙𝑜𝑑𝑦𝑛𝑒] = 191.2 𝑝𝑖𝑥𝑒𝑙                   

𝜎𝑑
2 = 𝑣𝑎𝑟[𝑑𝑠𝑡𝑒𝑟𝑒𝑜 − 𝑑𝑣𝑒𝑙𝑜𝑑𝑦𝑛𝑒] =  0.707 𝑝𝑖𝑥𝑒𝑙              (5.7) 

𝑈𝐿𝑣𝑒𝑙𝑜𝑑𝑦𝑛𝑒 = 
𝑓𝑥.𝑥𝑣𝑒𝑙𝑜𝑑𝑦𝑛𝑒

𝑧𝑣𝑒𝑙𝑜𝑑𝑦𝑛𝑒
+ 𝑥0,  𝑑𝑣𝑒𝑙𝑜𝑑𝑦𝑛𝑒 =

𝑓𝑥.𝑏

𝑧𝑣𝑒𝑙𝑜𝑑𝑦𝑛𝑒
                           (5.8) 

Figure (5.43) and Figure (5.44) plots 𝑈𝐿𝑠𝑡𝑒𝑟𝑒𝑜, 𝑈𝐿𝑣𝑒𝑙𝑜𝑑𝑦𝑛𝑒 , 𝑑𝑠𝑡𝑒𝑟𝑒𝑜, 𝑑𝑣𝑒𝑙𝑜𝑑𝑦𝑛𝑒 for test no.1 

 

Figure (5.43): 𝑈𝐿𝑠𝑡𝑒𝑟𝑒𝑜, 𝑈𝐿𝑣𝑒𝑙𝑜𝑑𝑦𝑛𝑒 for test no.1 along frames 
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Figure (5.44): 𝑑𝑠𝑡𝑒𝑟𝑒𝑜, 𝑑𝑣𝑒𝑙𝑜𝑑𝑦𝑛𝑒 for test no.1along frames 

Also, the maximum process variances developed in section 5.1.2 is used,  

𝜎𝛼
2 = 1.087

𝑟𝑎𝑑

𝑠2
 , 𝜎𝐽

2 = 61
𝑚

𝑠3
 , 𝜎𝑎

2 = 548 
𝑚

𝑠2
                        (5.9) 

5.2.1 Linear Measurement model results 

Figures (5.45 through 49) plots the estimated states by the impulse discretized process 

models of CTRPV and CTRA filters with mechanically limited process variance in 

equation (5.9), linear measurement variance in equation (5.6) and initial conditions of 

equations (5.3a, b), for test no.1 for 54 frames (5.4 seconds). 
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Figure (5.45): Estimated trajectory by linear measurement model for KITTI data 

In Figure (5.45) although both filters start from (0,0) position which is far from the true 

position they quickly capture the true trajectory, the rms of lateral position x error 

estimation is 0.9727m, 0.9731m for CTRPV,CTRA respectively, while the rms of 

longitudinal position z error estimation is 4.3563m, 5.9341m for CTRPV,CTRA 

respectively, indicating that the rms of the distance error estimation is  4.4635m, 6.0134m 

for CTRPV,CTRA respectively, that is the performance of CTRPV dominants   

 
Figure (5.46): Estimated heading by linear measurement model for KITTI data 
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Figure (5.46) shows that CTRA estimated heading converges to the true heading shifted 

by −𝜋 with total rms of 24.27 deg, while CTRPV converges to the true heading shifted 

by −𝜋 with total rms of 24.21 deg that is less than CTRAbecause CTRPV converges 

faster than CTRA, note that the both filters is in reverse estimation trap situation, so the 

minus the polar velocity is the true estimation, see Figure (5.47). 

 
Figure (5.47): Estimated minus polar velocity by linear measurement model for KITTI 

data 

The estimated minus acceleration is plotted in Figure (5.48). 

 
Figure (5.48): Estimated minus acceleration by linear measurement model for KITTI 

data 

The estimated turn rate is plotted in Figure (5.49). 
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Figure (5.49): Estimated turn rate by linear measurement model for KITTI data 

Applying the impulse discretized process model with linear measurement model filters 

with adaptive noise variances, computed as the following equations as (3.17,18) 

𝜎𝑧(𝑘) =  
𝑓𝑥 . 𝑏

𝑑2(𝑘)
∗ 𝜎𝑑                                                                  (5.10𝑎) 

𝜎𝑥(𝑘) =  
(𝑥0 − 𝑢𝑙(𝑘)). 𝑏

𝑑2(𝑘)
∗ 𝜎𝑑 + 

𝑏

𝑑(𝑘)
∗ 𝜎𝑢𝑙                           (5.10𝑏) 

Figure (5.50) shows that 𝜎𝑧(𝑘)  is increasing dramatically with time 

 
Figure (5.50): linear measurement model z_deviation for test data no.1 

Figure (5.51) shows that 𝜎𝑥(𝑘)  is crossing zero at 37,38 frames 
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Figure (5.51): linear measurement model x_deviation for test data no.1 

we have the results depicted in the following figures for 54 frames (00:54 minute) 

 
Figure (5.52): Estimated trajectory position by adaptive measurement model for KITTI 

data 

note that CTRA filter captures the true trajectory as shown in Figure (5.52), while CTRPV 

still about the stereo measured  trajectory, the rms of lateral position x error estimation is 

0.3477 m, 0.3468m for CTRPV,CTRA respectively, while the rms of longitudinal 

position z error estimation is 2.8926 m, 3.5423 m for CTRPV,CTRA respectively, 

indicating that the rms of the distance error estimation is 2.9134 m, 3.5592 m for 

5 10 15 20 25 30 35 40 45 50
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

frame number(1e-1 second)

la
te

ra
l 
x
 d

e
v
ia

ti
o
n
 s

ig
m

a
-x

 (
m

e
te

r)

sigma-x propogation over the frames 

7 8 9 10 11 12 13

10

20

30

40

50

60

70

80

ego X-axis, velodyne reverse Y-axis

e
g
o
 Z

-a
x
is

, 
v
e
lo

d
y
n
e
 r

e
v
e
rs

e
 X

-a
x
is

the model time update

 

 

velodyne data as reference

stereo observation data

CTRPV-EKF-filter estimation

CTRA-EKF-filter estimation



www.manaraa.com

 

 84 

CTRPV,CTRA respectively, that is the performance of CTRPV dominants, and the 

nonlinear measurement model dominants since its more accurate than the linear. 

Applying the zero-order-hold discretized process model with linear measurement model 

filters, we have very close results to previous. 

5.2.2 Nonlinear Measurement Model Results 

Figures (5.53 through 57) plots the estimated states by the impulse discretized process 

models of CTRPV and CTRA EKF filters with mechanically limited process variance in 

equation (5.9), nonlinear measurement variance in (5.7) and initial conditions equations 

(5.3a, b), for test no.1 for 54 frames (00:54 minute). 

In Figure (5.53) both filters capture the true trajectory, the rms of x estimation is 0.3174m, 

0.4355m for CTRPV,CTRA respectively, while the rms of z estimation is 3.2756m, 

4.2897m for CTRPV,CTRA respectively, indicating that the rms of the distance 

estimation is 3.291m, 4.3118m for CTRPV,CTRA respectively, that is the performance 

of CTRPV dominants, and the nonlinear measurement model dominants since its more 

accurate than the linear. 

 
Figure (5.53): Estimated trajectory by nonlinear measurement model for KITTI data 
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Figure (5.54): Estimated heading by nonlinear measurement model for KITTI data 

In Figure (5.54) CTRA estimated heading converges to the true heading shifted by −𝜋 

with total rms of 18.88 deg, while CTRPV converges to the true heading shifted by −𝜋 

with total rms of 18.87 deg close to CTRA, note that the both filters is in reverse 

estimation trap situation, so the minus the polar velocity is the true estimation as in Figure 

(5.55), Applying the zero-order-hold discretized process model with nonlinear 

measurement model filters, results were very close to impulse discretized process model 

 
Figure (5.55): Estimated minus polar velocity by nonlinear measurement model for 

KITTI data 

The estimated minus acceleration is plotted in Figure (5.56) 
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Figure (5.56): Estimated minus acceleration by nonlinear measurement model for 

KITTI data 

The estimated turn rate is plotted in Figure (5.57).  

 

 

Figure (5.57): Estimated turn rate by nonlinear measurement model for KITTI data 
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Chapter 6 

Conclusions, Recommendations and Perspectives 

6.1 General Conclusions 

In this thesis, a novel approach for estimating the motion of on-road vehicles from 

a moving platform based on stereo image sequences by means of 1st order Extended 

Kalman Filter is proposed. the realistic data KITTI benchmark is suitable for our work 

since it provides accurate 3D pose for objects. The proposed simplified bicycle model 

based  dynamic models CTRPV,CTRA shows its reliability in the estimation of the 

motion of the vehicle as proved by the results, those simple motion models recover the 

complexity of the vehicle dynamics that depends on internal parameters of the specified 

vehicle ( such that its mass, center of gravity, dimensions, tire stiffness, road friction, 

aerodynamic coefficient, inertias) that are impossible to be estimated through the ego 

sensors and there are a lot of variants of the on-road vehicles differs in their structure and 

physical characteristics. The estimated states are the 2D position and orientation of an 

object relative to the ego-vehicle, as well as the object’s, velocity, acceleration and the 

rotational velocity (yaw rate). The proposed linear measurement model assumes a 

stationary zero mean white noise results in reliable work although KITTI stereo vision 

system introduces nonstationary biased (nonzero mean) random process. The proposed 

discretization methods impulse and zero-order-hold at the 10 Hz sampling frequency of 

KITTI dataset doesn’t show significant difference in terms of the filter performance for 

CTRPV, CTRA with both linear and nonlinear measurement models. 

Its proved analytically and numerically that our proposed system is full observable 

for the on-road practical situations state subspace except for zero polar velocity of the 

observed vehicle. The practical issues such as the filter initialization, the numerical errors 

are covered fully. The overall system is systematically evaluated both on synthesized and 

real-world data of KITTI benchmark. The synthesized data results show that 

mechanically limited initial conditions and process noise variance filter accurately and 

fast convergent estimate the object pose and motion parameters for a very complicated 

situation, the experimental results show that the proposed approach is able to reliably 

estimate the object pose and motion parameters in a variety of challenging situations. The 

limits of the system are also carefully investigated. 
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For unknown initial states with known initial estimate variance and known noise 

characteristics the unconstrained synthesized data the known quick convergence with 

reverse estimation trap chance, the deterministic zero initial states show critical stability, 

the mechanical limited stochastic zero initial states is reliable convergent CTRA-EKF 

demonstrates faster convergence, less chance of reverse estimation trap and reduced 

steady estimation error of (x,z,v) than CTRPV-EKF. The designed practical situation data 

(left turning and front oncoming) the mechanical limited stochastic zero initial states 

CTRPV and CTRA-EKF and maximum process variances show fast fluctuating 

convergence. For KITTI benchmark, the stochastic zero initial states with mechanically 

limited variance, and the analyzed KITTI stereo vision measurement model noise 

characteristics and mechanically limited process noise variance the CTRPV and CTRA-

EKF converges reliably and accurately indicating that the nonlinear measurement model 

performance dominants. 

Its shown that the computational numeric errors at the computation of the 

Jacobeans and the inverse of the pre-fit residual covariance matrix S in the case of division 

by zero or close to singular matrix are big challenge for maintaining the estimator stability 

especially that require a lot of avoidance conditions. 

6.2 Recommendations 

It’s sure that future investigation in accurate characterization of the stereoscopic 

vision measurement noise properties of no-stationarity, biasness, and variance 

determination would push forward the reliability of the stereo vision system, also the 

linear stereoscopic vision measurement model analysis shows zero lateral position 

variance 𝜎𝑥  at a specified parameter, that seems to give a chance of noise-by noise 

cancellation in our estimation system. 

In the future work the reverse estimation trap could be solved by developing detection 

algorithm of the situation then adapted estimation to reverse the polar velocity v by 

changing its sign and reverse the heading by shifting (k.π: k is integer). 

The reverse estimation could be solved by assisted initialization through the help 

of the driver or other program such that the algorithm could be adapted to reverse the 

polar velocity v by changing its sign and reverse the heading by shifting (pi rad). 

The turn acceleration deviation of 2 rad/s2 that excited the CTRA model means that the 

turn rate could change by 2*time rad/s (above fig). Therefore, the heading could change 
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by t2rad, so there is chance of the 1 rad heading change (reverse the forward direction of 

the car) if constant 2 rad/s2 turn acceleration applied for sqrt(pi) =1.7225 sec, but this is 

not practical situation since that is very sharp., Its concluded that for known fully 

stochastic initial conditions and known noise characteristics the CTRA-EKF converges 

faster than CTRPV-EKF to the true states of the system, noting that the estimated heading 

surely converges to the true heading or the true heading shifted by (pi rad) (the reverse 

direction) because of the farness of the initial estimates. If we have a near initial heading 

estimate, it would converge to the true heading without any shift. It’s noted from large 

number of experiments that the reverse trap occurred 99% of times at beginning of the 

filter (bad initialization) and 1% in the middle course of filtering (rough turn = high 

sigma_alpha). Thus, the first problem could be solved by assisted initialization by the 

help of the driver or other program. While the second problem could be solved by 

knowing that the minus polar velocity is not on-road vehicle situation. Therefore, the 

algorithm could be adapted to reverse the negative v by changing its sign and reverse the 

heading by shifting (pi rad). 

6.3 Improvements and Perspectives 

The main contribution of the thesis is conquering the KITTI realistic dataset, such that 

that the coordinate frames were assigned, the dynamic models, measurement model were 

formulated, to be compatible for the estimation algorithms development and evaluation 

on that dataset, another advantage is that the all our implemented MATLAB functions 

were organized and written such that they are extendable for deployment in any other 

estimation algorithm, so it’s ready to extend our work through applying advanced filters 

like unscented Kalman filter, interacting multiple models, particle filter. 

There are lot variant dynamic models developed in the literature such as the 

coordinated turn siblings like Constant Steering Angle and Velocity (CSAV) and 

Constant Curvature and Acceleration (CCA), there are also another category called 

coordinate uncoupled models contains Constant Cartesian Velocity and Constant 

Cartesian Acceleration models, so it’s ready to extend our work through applying all these 

models. 
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Appendix A: MATLAB Functions Implementation 

CTRPV.m file 

 
function [ x, z, v, h, w] = CTRPV( x, z, v, h, w ,dxe ,dze, dhe, dT) 
if(abs(w)<1e-7; 
            x =-dxe + x +dT*v*cos(h); 
            y = -dze +z + dT*v*sin(h); 
else 
            x =-dxe + x + sin(w*dT/2)*cos(h+w*dT/2)*2*v/w; 
            y = -dze +z + sin(w*dT/2)*sin(h+w*dT/2)*2*v/w; 
end 
            x = cosd(dhe)*x + sind(dhe)*y; 
            z = -sind(dhe)*x + cosd(dhe)*y; 
v  = v; 
h  = -(dhe*pi/180) +h + w*dT; 
w  = w;     
end 

 
CTRA.m file 

 
function [ x,z,psi,v,w,a ] = CTRA( x,z,psi,v,w,a  ,dxe ,dze, d_psi_e,dT) 
if(abs(w)<1e-7))%divide by zero prevent 
    X =-dxe + x + (dT*cos(psi)*(2*v + a*dT))/2; 
    Z = -dze + z + (dT*sin(psi)*(2*v + a*dT))/2 ; 
else 
    X =-dxe + x +((v*w+a*w*dT)*sin(psi+w*dT) +a*cos(psi+w*dT) -v*w*sin(psi) -a*cos(psi))/w^2 ; 
    Z = -dze + z +((-v*w-a*w*dT)*cos(psi+w*dT) +a*sin(psi+w*dT) +v*w*cos(psi) -a*sin(psi))/w^2 ; 
end  
    x = cosd(d_psi_e)*X + sind(d_psi_e)*Z; 
    z = -sind(d_psi_e)*X + cosd(d_psi_e)*Z; 
    psi =-(d_psi_e*pi/180) + psi + w*dT ; 
    v = v + a*dT; 
    w = w; 
    a = a;  
end 

 
Analytic_CTRA_JAC.m file 

 
Syms ego_psiego_x1X_ovwdTpsiaZ_oego_x2 
x_augemented = cos(ego_psi)*(-ego_x1 + X_o +((v*w+a*w*dT)*sin(psi+w*dT) +a*cos(psi+w*dT) -

v*w*sin(psi) -a*cos(psi))/w^2) + sin(ego_psi)*(-ego_x2 + Z_o +((-v*w-a*w*dT)*cos(psi+w*dT) 

+a*sin(psi+w*dT) +v*w*cos(psi) -a*sin(psi))/w^2); 
JA(1,3) = diff(x_augemented,psi); 
JA(1,4) = diff(x_augemented,v); 
JA(1,5) = diff(x_augemented,w); 
JA(1,6) = diff(x_augemented,a); 

 
if (w==0) 
JA(1,3) = limit(JA(1,3),w,0); 
JA(1,4) = imit(JA(1,4),w,0); 
JA(1,5) = limit(JA(1,5),w,0); 
JA(1,6) = limit(JA(1,6),w,0); 
end 



www.manaraa.com

 

 94 

 
z_augemented =-sin(ego_psi)*(-ego_x1 + X_o +((v*w+a*w*dT)*sin(psi+w*dT) +a*cos(psi+w*dT) -

v*w*sin(psi) -a*cos(psi))/w^2) + cos(ego_psi)*(-ego_x2 + Z_o +((-v*w-a*w*dT)*cos(psi+w*dT) 

+a*sin(psi+w*dT) +v*w*cos(psi) -a*sin(psi))/w^2; 
JA(2,3) = diff(x_augemented,psi); 
JA(2,4) = diff(x_augemented,v); 
JA(2,5) = diff(x_augemented,w); 
JA(2,6) = diff(x_augemented,a); 

 
if (w==0) 
JA(2,3) = limit(JA(2,3),w,0); 
JA(2,4) = imit(JA(2,4),w,0); 
JA(2,5) = limit(JA(2,5),w,0); 
JA(2,6) = limit(JA(2,6),w,0); 
end 

 
JAC_CTRPV1.m file 

 
function [ JA ] = JAC_CTRPV1( x1, x2, v, h, w ,ego_x1 ,ego_x2, ego_h, dT) 

 
JA = zeros(5,5); 

 
JA(1,1)= cosd(ego_h); 
JA(1,2)= sind(ego_h); 
JA(1,3) = cosd(ego_h)*sin(w*dT/2)*cos(h+w*dT/2)*2/w + sind(ego_h)*sin(w*dT/2)*sin(h+w*dT/2)*2/w; 
JA(1,4) = -cosd(ego_h)*sin(w*dT/2)*sin(h+w*dT/2)*2*v/w + sind(ego_h)*sin(w*dT/2)*cos(h+w*dT/2)*2*v/w; 
JA(1,5) = cosd(ego_h)*(cos(h+w*dT/2)*(-sin(w*dT/2)*2*v/(w^2)+cos(w*dT/2)*dT*v/w)-

(sin(w*dT/2)*sin(h+w*dT/2)*dT*v/w)); 
JA(1,5) = JA(1,5) + sind(ego_h)*(sin(h+w*dT/2)*(-

sin(w*dT/2)*2*v/(w^2)+cos(w*dT/2)*dT*v/w)+(sin(w*dT/2)*cos(h+w*dT/2)*dT*v/w)); 

 
if(w==0) 
JA(1,3)  = dT*cos((ego_h*pi/180) - h); 
JA(1,4)  = dT*v*sin((ego_h*pi/180) - h); 
JA(1,5) = (dT^2*v*sin((ego_h*pi/180) - h))/2; 
End 

 
JA(2,1)= -sind(ego_h); 
JA(2,2)= cosd(ego_h); 
JA(2,3) = -sind(ego_h)*sin(w*dT/2)*cos(h+w*dT/2)*2/w + cosd(ego_h)*sin(w*dT/2)*sin(h+w*dT/2)*2/w; 
JA(2,4) = sind(ego_h)*sin(w*dT/2)*sin(h+w*dT/2)*2*v/w + cosd(ego_h)*sin(w*dT/2)*cos(h+w*dT/2)*2*v/w; 
JA(2,5) = -sind(ego_h)*(cos(h+w*dT/2)*(-sin(w*dT/2)*2*v/(w^2)+cos(w*dT/2)*dT*v/w)-

(sin(w*dT/2)*sin(h+w*dT/2)*dT*v/w)); 
JA(2,5) = JA(2,5) + cosd(ego_h)*(sin(h+w*dT/2)*(-

sin(w*dT/2)*2*v/(w^2)+cos(w*dT/2)*dT*v/w)+(sin(w*dT/2)*cos(h+w*dT/2)*dT*v/w)); 

 
if(w==0) 
JA(2,3) =-dT*sin((ego_h*pi/180) - h);    
JA(2,4) =dT*v*cos((ego_h*pi/180) - h);    
JA(2,5) =(dT^2*v*cos((ego_h*pi/180) - h))/2; 
end 

 
JA(3,3) = 1; 
JA(4,4) = 1; 
JA(4,5) = dT; 
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JA(5,5) = 1; 
end 

 
JAC_CTRA.m file 

 
function [ JA ] = JAC_CTRA( X_o,Z_o,psi,v,w,a ,ego_x1 ,ego_x2, ego_psi ,dT) 
J_presecion = 1e-7; 
JA = eye(6);  
JA(1,1)= cosd(ego_psi); 
JA(1,2)= sind(ego_psi); 
JA(1,3) = (CTRA( X_o,Z_o,psi+J_presecion,v,w,a  ,ego_x1 ,ego_x2, ego_psi,dT) - CTRA( X_o,Z_o,psi,v,w,a  

,ego_x1 ,ego_x2, ego_psi,dT))/J_presecion; 
JA(1,4) =  (CTRA( X_o,Z_o,psi,v+J_presecion,w,a  ,ego_x1 ,ego_x2, ego_psi,dT) - CTRA( X_o,Z_o,psi,v,w,a  

,ego_x1 ,ego_x2, ego_psi,dT))/J_presecion; 
JA(1,5) =(CTRA( X_o,Z_o,psi,v,w+J_presecion,a  ,ego_x1 ,ego_x2, ego_psi,dT) - CTRA( X_o,Z_o,psi,v,w,a  

,ego_x1 ,ego_x2, ego_psi,dT))/J_presecion; 
JA(1,6) = (CTRA( X_o,Z_o,psi,v,w,a+J_presecion  ,ego_x1 ,ego_x2, ego_psi,dT) - CTRA( X_o,Z_o,psi,v,w,a  

,ego_x1 ,ego_x2, ego_psi,dT))/J_presecion; 

 
JA(2,1)= -sind(ego_psi); 
JA(2,2)= cosd(ego_psi); 

 
[  X_o1,Z_o1,psi1,v1,yawr1,a1 ] = CTRA( X_o,Z_o,psi+J_presecion,v,w,a  ,ego_x1 ,ego_x2, ego_psi,dT); 
[  X_o2,Z_o2,psi2,v2,yawr2,a2  ] =  CTRA( X_o,Z_o,psi,v,w,a  ,ego_x1 ,ego_x2, ego_psi,dT); 
JA(2,3) = ( Z_o1-Z_o2  )/J_presecion; 
[  X_o1,Z_o1,psi1,v1,yawr1,a1  ] = CTRA( X_o,Z_o,psi,v+J_presecion,w,a  ,ego_x1 ,ego_x2, ego_psi,dT); 
JA(2,4) = ( Z_o1-Z_o2  )/J_presecion; 
[  X_o1,Z_o1,psi1,v1,yawr1,a1  ] = CTRA( X_o,Z_o,psi,v,w+J_presecion,a  ,ego_x1 ,ego_x2, ego_psi,dT); 
JA(2,5) = ( Z_o1-Z_o2  )/J_presecion; 
[  X_o1,Z_o1,psi1,v1,yawr1,a1  ] = CTRA( X_o,Z_o,psi,v,w,a+J_presecion  ,ego_x1 ,ego_x2, ego_psi,dT); 
JA(2,6) =( Z_o1-Z_o2  )/J_presecion; 

 
JA(3,5) = dT; 
JA(4,6) = dT; 
end 

 


