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Abstract

In this thesis, a novel approach for estimating the motion of on-road vehicles based
on stereo image sequences from a moving platform is proposed. The approach focuses on
the practical situations of the on-road traffic such as oncoming traffic and turning vehicles
at urban intersections. The estimated states are the 2D position and orientation (yaw) of
an observed vehicle relative to the ego-vehicle, as well as the observed vehicle’s velocity,
acceleration and the rotational velocity (yaw rate). These parameters are estimated by
means of 1% order Extended Kalman Filter provided by the stereo vision observations of
tracked point on the observed vehicle’s surface. The stereo vision measurement model
noise is analyzed and successfully characterized for the real test data, also the dynamic
models noise is analyzed and sufficiently estimated through the proposed mechanical
limitations assumption. The observability property of the overall system is inspected, such
that its proved analytically and numerically that the system is observable for on-road
practical situations. The overall system is systematically evaluated both on synthesized
and real-world data from the realistic dataset “KITTI benchmark”, where the synthesized
data results show that the proposed mechanically limited filter initialization and process
noise variance accurately estimate the object pose and motion parameters in a very
complicated situation with fast convergence, also the real data results show that the
proposed system is able to reliably estimate the object pose and motion parameters in a
variety of challenging situations. Finally, the limits of the system and the practical issues
such as the filter initialization and the numerical errors are carefully investigated.

Keywords: Kalman Filtering, Stereo Vision, Driver Assistance System, KITTI
Benchmark, Random Process.
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Xp+1k
Piiqk
Vi
Sk
Ky
X+ 1jk+1
Pk

Nomenclature

The steering angle of the front wheel

The distance between the front and the rear wheel

The distance between rear wheel and center of mass

The side slip angle

The moving direction with in a global world coordinate system

The radius of the rear, front and center of mass wheel’s circular path
The yaw angle

The arc length

The focal length of the camera in the x and y direction (pixels)

The coordinates of the principal point in the x and y direction (pixels)
The coordinates of the projected point in the x and y direction (pixels)
The stereo baseline

The horizontal projection of world point on left, right stereo camera
The stereo disparity

The observed vehicle position in the horizontal plane by meters

The polar velocity of the observed vehicle by (m/s)

The polar acceleration of the observed vehicle by (m/s2).

The polar jerk of the observed vehicle by (m/s3).

The heading angle of the observed vehicle from the X-axis by (rad)
The counterclockwise turn rate of the observed vehicle by (rad/s)
The turn acceleration of the observed vehicle (rad/s?)

The ego-vehicle translational displacement at 1 time instant (m)

The ego-vehicle rotational displacement at one time instant (rad)

the process model noise covariance matrix

The measurement model noise covariance matrix

The variance of the process model polar acceleration by (m/s?)

The variance of the process model forward jerk by (m/s®)

The variance of the process model turn acceleration by (rad/s?)

The variance of the linear measurement model measured position

X, Zz respectively by (meters)

The variance of the nonlinear measurement model measured disparity
and lateral projection respectively (pixels)

Predicted (a priori) state estimate

Predicted (a priori) covariance estimate

Innovation or measurement pre-fit residual

Innovation (or pre-fit residual) covariance

Optimal Kalman gain

Updated (a posteriori) state estimate

Updated (a posteriori) estimate covariance
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ACC
ASIRT
BSD
CSAV
CCA
CTRA
CTRPV
CT
DAS
DSS
DT
EKF
ESP
FCW
ITS

VI

KF
KITTI

LDW
LTI
RMS
RTK
TSR
UKF

List of Abbreviations

Adaptive Cruise Control

Association for Safe International Road Travel
Blind Spot Detection

Constant Steering Angle and Velocity
Constant Curvature and Acceleration
Constant Turn Rate and Acceleration
Constant Turn Rate and Velocity
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Chapter 1
Introduction

1.1 Motivation

According to Association for Safe International Road Travel (ASIRT) road traffic
crashes rank as the 9th leading cause of death and account for 2.2% of all deaths globally
since nearly 1.3 million people die and about 50 million are injured or disabled in road
crashes each year (ASIRT, 2017). Therefore, the development of crashes avoidance
systems, road-safety, in-vehicle information system (IVIS) and driver support systems
(DSS) became a wide-open research area in the past decades. Until now there are
hundreds of active projects in industry, universities, and research centers include adaptive
cruise control (ACC), forward collision warning (FCW), lane departure warning (LDW),
adaptive light control (ALC), traffic Sign recognition (TSR), blind spot detection (BSD),
driver drowsiness detection (DDD), in-vehicle navigation system, intelligent speed
adaptation (ISA), vehicle-to-vehicle (V2V) communication, on-road object recognition,
and night vision etc. (Kim, S., Kang, J., Oh, S., Ryu, Y., Kim, K., Park, S., 2008). The
two large projects in the literature are Intelligent vehicle initiative (IVI) funded by US
Department of Transportation (1997-2005) and intelligent car initiative project (i2010)
funded by European Commission. V1 aimed at preventing driver distraction, introducing
of crash avoidance systems, and studying the effects of in-vehicle technologies on driver
performance while i2010 project aimed to encourage smart, safe and green system for
transportation and promotes cooperative research in intelligent vehicle systems (M.
Akhlag- Tarek R. Sheltami- Bo Helgeson- Elhadi M. Shakshuki, 2011). All of those
systems are considered intelligent transportation systems that consists a very interesting
and vital part of the smart city systems revolution.

In parallel many road environment perception modalities were developed like
radio detection and ranging (Radar), light detection and ranging (Lidar), Laser scanners,
sound navigation and ranging (Sonar), global positioning system (GPS) and computer
vision. Although the GPS allows to reference the position of the on-road vehicles within
a global coordinate system accurately, they lose this benefit in a lot on on-road situations
where the satellite signals are loosed such as in confined areas. So among the above
modalities the vision-based systems are becoming the most popular because of their

independence from the urban infrastructure and low-cost since the cameras become
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cheaper, smaller, and of higher quality than ever before (Sayanan Sivaraman,Mohan
Manubhai Trivedi, 2013).

1.2 Literature Review

On-road vehicles detection and tracking has been explored by many researchers in
the computer vision and intelligent transportation systems (ITS) community over the past
two decades. In this section the proceeding proposed approaches in the literature will be
divided into vehicle detection approaches and vehicle tracking approaches, the vehicle
tracking approaches will be further divided into tracking approaches from stationary
sensor platform and from moving platform, the moving platform approaches will be

further divided into monocular and stereoscopic systems.

1.2.1 Vehicle Detection Approaches

The vehicle detection approaches is divided into the appearance-based approaches and
the motion-based approaches that require a sequence of images for vehicle recognition.
Appearance-based approaches are common in the monocular vehicle detection literature
since they recognize vehicles directly from the images while motion-based approaches
are common in the monocular because stereo sequences provide 3-D depth
measurements. The extremely used features for appearance-based in the literature are the
histogram of oriented gradient (HOG) features and Haar-like features. HOG features are
descriptive image features, exhibiting good detection performance in a variety of
computer vision tasks. (M. Cheon, W. Lee, C. Yoon, and M. Park,, 2012) use the
symmetry of the HOG features extracted in a given image patch, along with the HOG
features themselves for vehicle detection, The main drawback of HOG features is that
they are quite slow to compute. Haar-like features are composed of sums and differences
of rectangles over an image patch. They are well suited for real-time vehicles detection
and high efficient for vehicles detection. (S. Sivaraman and M. Trivedi,, 2010) use Haar-
like features to detect the rear faces of preceding vehicles using a forward-facing camera,
there are other appearance-feature used in the literature like the edges, the symmetry, the
scale invariant feature transform (SIFT) features, Gabor features, the principal component
analysis (PCA). Although It is often more direct to use motion-based approaches in stereo
vision, the motion-based approached used for monocular vision in the literature. The main

used motion-based approaches are the background modeling and the optical flow.
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Adaptive background models have been used in some studies, in an effort to adapt
surveillance methods to the dynamic on-road environment. (A. Broggi, A. Cappalunga,
S. Cattani, and P. Zani, 2008) constructed an adaptive background model with vehicles
detected based on motion that differentiated them from the background. The optical flow
is a fundamental machine vision tool. In the literature optical flow is used for ego-motion
estimation, detection of overtaking vehicles in the blind spot, classification of the scene
as either intersection or non-intersection and segmentation of the on-road scene using

video (Sayanan et.al.2013).

1.2.2 Vehicle Tracking from Stationary Cameras

The vehicle tracking approaches in the literature is divided into two categories;
the approaches of tracking from stationary camera and the approaches of tracking from
moving platform. In the former category (Koller,D.,K. Daniilidis, and H. Nagel, 1993)
proposed vision-based vehicles tracking system for surveillance of highway sections
traffic using stationary cameras placed at elevated position. Koller et. al. (1993)
discriminated moving objects from the background on the basis of image flow, where
clusters of image positions showing mainly translational displacements between
consecutive frames, were assumed to belong to single vehicles, then a parametrized 3D
vehicle shape model was projected onto the image plane and aligned to edges, the detected
vehicles were tracked by means of an extended Kalman filter using a 3D vehicle motion
model. (Kamijo, S., Y. Matsushita, K. Ikeuchi, and M. Sakauchi, 2000) segmented
moving objects from a static or adaptive background model using background
subtraction, while (Mosabbeb, E., M. Sadeghi, M. Fathy, and M. Bahekmat, 2007)
depends on deviations from the background model in order to group the connected
foreground pixels, yielding a binary image where each pixel represents either foreground
or background are further analyzed. (Buch,N.,F. Yin,J. Orwell,D. Makris, andS. A.
Velastin, 2009) introduced a model free object representation based on groups of corner
features to yield more stable tracking results in dense traffic situations based on the law
of common fate concept of Gestalt psychologists. The idea was that a group of points
moving rigidly together was assumed to belong to the same vehicle. (Leotta, M.andJ.
Mundy, 2007) tracked a set of contour segments instead of corner features in order to

estimate the 3D translational motion of vehicles from low camera angle.
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1.2.3 Vehicle Tracking from Moving Platforms

In the category of vehicle tracking approaches from moving platforms (Badino,
2004) proposed image-based method to distinguish static from independently moving
points in the scene using compensating the ego-motion; the vehicle speed and yaw rate is

provided by inertial sensors; that achieve additional robustness.

1.2.4 Monocular Systems

Most publications in single camera based vision addresses tracking leading
vehicles on highways using various techniques such as using image statistics (Zeng,
Z.and S. Ma, 2002), using symmetry (Liu,M.,C. Wu, andY. Zhang, 2007); and using
optical flow, contours and template-matching (Dahlkamp, H., A. Pece, A. Ottlik, and H.
Nagel, 2004). A good survey on different vehicle detection methods from a moving
platform using optical sensors is given in (Sun,Z.,G. Bebis, andR. Miller, 2004).
(Leibe,B.,N. Cornelis,K. Cornelis, andL. Van Gool, 2007) utilized the combination of
depth and appearance and trained local classifiers to detect characteristic objects parts in

the 2D image.

1.2.5 Stereoscopic Systems

(Mark, W. van der and D. M. Gavrila, 2006) provided a good overview on stereo
vision in the intelligent vehicle domain, including an extensive evaluation of different
real-time stereo implementations. (Mark, W. van der and D. M. Gavrila, 2006) modeled
objects as upright planes on a ground plane, such planes can be identified based on an
accumulation of equal distances within an image region, where the ground plane does not
necessarily have to be flat. (Labayrade,R.,D. Aubert, andJ.-P. Tarel, 2002) proposed a
solution for dealing with non-flat roads using v-disparity images. (Barrois, B., S.
Hristova, C. Woehler, F. Kummert, and C. Hermes, 2009) proposed fitting the stereo
vision 3D point cloud data to approximate cuboid model of the vehicle shape.
(Hahn,M.,C. Wohler,J. Einhaus,C. Hermes, and F. Kummert, 2010) proposed an
approach for object tracking and motion estimation based on stereo vision, optical flow,
and mean shift clustering techniques, (Dang, T., C. Hoffmann, and C. Stiller, 2002)
proposed method for fusing the depth information from stereo with motion.

1.2.6 Tracking Strategies

The Kalman filter (KF) is the most popular tracking technique that assumes a

Gaussian probability distribution of the estimated parameters, it has several variants and
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extensions, including the Extended Kalman filter (EKF), The Unscented Kalman filter,
or multi-filter approaches. Kalman filters are used in combination with a linear motion
model in (Dang, T., C. Hoffmann, and C. Stiller, 2002), or with particular vehicle motion
models incorporating specific properties of vehicle movements (Leibe,B.,N. Cornelis,K.
Cornelis, andL. Van Gool, 2007).

Unlike KF the particle filter represents the posterior probability density function
of a state estimate by a set of (random) sample state vectors drawn from this distribution
(particles) that allows for modeling more complex distributions than Gaussians as well as
nonlinear transformations of random variables (THRUN, Sebastian, 2005). The evolution
of the particle set can be steered via a proper motion model. Hahn et. al. (2010) used
particle filter with a linear motion model in or with constant turn models for tracking the
3D pose of vehicles. Although one can observe an increase in publications that utilize a
particle filter, the drawback of this filter is that it is non-deterministic and, depending on
the problem, computationally much more complex than the Kalman filter, even if
capabilities for parallel computing are exploited. In the case of a linear Gaussian system,
the particle filter can never yield a better result than the Kalman filter (Barth, 2010).
However, even the suboptimal EKF, which will play a key role in this thesis, yields very

promising results in many practical situations at much lower computational costs.

1.3 Problem Formulation

Consider an observed vehicle that is moving on flat road as shown in figure (1.1),
which is captured through sequence from forward-facing stereo vision system from the
ego vehicle, and consider a coordinate frame system that is originated at the optical center
of the left camera such that the z-axis is in the direction of the ego vehicle forward
direction, the x-axis is in the right direction of the ego vehicle. The observed vehicle is
moving in the horizontal plane X-Z, with the following states:

e x,z denotes the observed vehicle position in the horizontal plane by meters

e v denotes the polar velocity of the observed vehicle that is the magnitude of the
velocity vector measured by (meter/second), note that it is assumed in the same
direction of the vehicle forward neglecting the side slip angle.

e a denotes the acceleration that is the time derivative of the polar velocity of the
measured by (meter/second?).

e his the heading angle of the observed vehicle, from the X-axis to the velocity
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vector measured by (radian), counterclockwise for positive angles.
e o denotes the time derivative of the heading angle (the turn rate), measured by

(radian/second), counterclockwise for positive rate.

3 o X

The ego
vehicle

Figure (1.1): The observed vehicle in the coordinate frame of the ego-vehicle

The projection of the object on the adjacent image planes is a stream of noisy
measurements of the lateral projection UL,, on the left camera and the disparity d,, for
that projected point

UL UL UL UL
m] [ m [ m] [ m ,....: kisthe time instant
dm ly'L d dn 1L din iy

We will estimate the true states of the observed vehicle (x,z, v, a, h, w) , which are
constrained by the following dynamic model f and the noisy the measurement model h

[x,2,v,a,h @1 = f([x,2,v,a h,®];) + q;
L
[lil "| =h(x,z,v,a,hwk) + 1
m 1y

Where q;, 1, parameterize the dynamic model and measurement model noises

1.4 Thesis Contribution

In this thesis we deployed two famous dynamic motion models; the constant turn
rate and polar velocity (CTRPV), and the constant turn rate and acceleration (CTRA); in
real stereo vision measurements based estimation. This study inspects the observability
of the proposed approach analytically and numerically, also extends CTRPV, CTRA from
global frame coordinates to a moving frame coordinates of the Karlshure Institute of

Technology and Toyota Technologies Institute (KITTI) dataset ego vehicle and augment
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the dataset environment parameters such that the estimator is compatible with the dataset
objects motion estimation problem. An analysis of the stereo vision measurement noise
was introducing, such that an adaptive measurement noise variance filters we proposed
and evaluated. This study proposes reliable initialization and quantization models for
noise variance of the filters using the knowledge of the mechanical limitation of the
observed vehicle. The proposed approach was formulated to be extendable for
deployment of any other estimation algorithms like unscented Kalman filter, interacting
multiple models, particle filter, etc.

1.5 Thesis Outline

The remainder of this thesis will be organized as follows. Chapter 2 introduces the
over whole architecture of our system components, also it gives the fundamental concepts
of image formation and a comprehensive mathematical derivation of the on-road vehicles
motion and the stereo vision. Chapter 3 introduces the notation of state estimation by EKF
to be applied in later sections, then it systemizes the equations in the form of stochastic
state estimation problem, manipulating the numerical instability issues and analyzing the
measurement noise, ended by the demonstration of KITTI sensors processing, data
extraction and coordinates reassigning. Chapter 4 addresses the observability problem
analytically and numerically. The proposed system is systematically evaluated in Chapter
5 both on simulated and KITTI real-world data addressing the practical issues such as
initialization measurement and system model noise characterization. An outlook on future

research as well as the conclusions of this contribution is given in Chapter 6.

1.6 Research objectives

The research aims to develop a reliable and an accurate estimation algorithm of the
motion of the participant on-road vehicles that are located in the recognition range of
forward lateral stereo vision system, considering the realistic on-road environment

challenges.
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Chapter 2
System Architecture and Modeling

2.1 The System Development Environment

Surely it is unpractical to build the real environment for research purposes because
of the high cost, unavailability of some components, installation time, and consuming
efforts; instead the researchers work on well acquired datasets. In the past few years an
increasing number of benchmarks were developed to push forward the performance of
visual recognition systems, e.g., Caltech and Middlebury (Sayanan et. al. 2013).
However, the results from state-of-the-art algorithms revealed that methods ranking high
on established datasets such as Middlebury performed below average when being moved
outside the laboratory to the real world since most of these datasets are simplistic and
were taken in a controlled environment. Table(2.1) compares between the current State-
of-the-Art Stereo-vision Benchmarks and Datasets So (Andreas Geiger and Philip Lenz
and Christoph Stiller and Raquel Urtasun, 2013) developed KITTI dataset in order to
reduce this bias by providing challenging benchmarks with novel difficulties to the
computer vision community include non-Lambertian surfaces (e.g., reflectance,
transparency), large displacements (e.g., high speed), a large variety of materials (e.g.,
matte vs. shiny), as well as different lighting conditions (e.g., sunny vs. cloudy). KITTI
was developed as a novel challenging benchmark for the tasks of stereo, optical flow,
visual odometry, simultaneous localization and mapping (SLAM) and 3D object detection
(Geiger et. al. 2012).

Table (2.1): Comparison of current State-of-the-Art Benchmarks and Datasets

dataset type setting | #sequences | length | #frames | resolution
EISATS synthetic | - 1 - 498 0.3 Mpx
Middlebury laboratory | - 1 - 38 0.2 Mpx
TUMRGB-D | real indoor | 27 0.4 km | 65k 0.3 Mpx
New College | real outdoor | 1 2.2km | 51k 0.2 Mpx
Malaga 2009 real outdoor | 6 6.4 km | 38k 0.8 Mpx
Ford Campus | real outdoor | 2 51km |7k 1.0 Mpx
KITTI real outdoor | 22 39.2 km | 41k 0.5 Mpx
10
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2.2 System Architecture

GPS\MU

Ego vehicle . .
= inertial sensors

Observed : Ewvaluation

. Stereo Vision S
vehicle Criteria

Laser scanner

Figure (2.1): Diagram of the interacted components of the system

The system architecture is demonstrated in Figure (2.1), the system consists of a moving
ego-vehicle precepted its own motion by GPS/IMU inertial sensors and equipped by
stereo vision system and laser scanner. Figure (2.2) shows KITTI ego-vehicle; VW Passat
station wagon as recording platform, it recognizes the motion of the observed vehicle
within the stereo vision sensor field of view distant less than 120 meters that is the laser
scanner range. The state estimation algorithm is 1st order extended Kalman filter provided
by the ego motion data from the inertial sensors, and the observed vehicle motion from
the stereo vision measurements. The evaluation criteria of the estimation algorithms
performance and efficiency is the root mean square RMS of the estimation error referred
to the trusted data that are the relative position and heading of the observed vehicle
measured by the laser scanner. In the case of synthesized data that provides all the true
states so we compute the RMS for all the states for evaluation purpose.
Velodyne HDL-64E Laserscanner
Point Gray Flea2 %

Figure (2.2): Ego-vehicle of KITTI dataset equipped by the sensory package

KITTI stereo vision system specifications are summarized in Table (2.2), it consists of
two high resolution (1.4 Megapixels) grayscale cameras (FL2-14S3M-C) provided by
ics_lenses with opening angle of 90deg, vertical opening angle of

11
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35deg, while the rotating 3D laser scanner (Velodyne) is 10 Hz, 0.09 deg angular
resolution, 120m range, 2 cm distance accuracy, 360 deg horizontal, 26.8 deg vertical

field of view.

Table (2.2): KITTI dataset stereo system specifications

Image resolution 1382*512 pixels
# cars per image up to 15

# pedestrians per image up to 30

Shutter speed 2ms

Frame rate 10 FPS

Stereo baseline 54 cm

Figure (2.3) shows the point cloud of 3D laser scanner projected on the corresponding
stereo image. KITTI inertial and GPS navigation system is OXTS RT3003, 6 axes, 100
Hz, L1/L2 RTK, resolution 0.02m / 0.1°, localization system which combines GPS,
GLONASS, an IMU and RTK correction signals. The cameras, laser scanner and
localization system were calibrated and synchronized, providing accurate ground truth.
(Geiger et. al. 2013).

Figure (2.3): KITTI 3D laser scanner point cloud projected on its corresponding image

2.3 Vision System Model

2.3.1 Pinhole Camera Model

We start with the most specialized and simplest camera model, which is the basic
pinhole camera. The geometry of pinhole camera is shown in Figure (2.4). The center of
projection is called the camera center or the optical center C. The line from the camera
center perpendicular to the image plane is called the principal axis or principal ray of the

camera z-axis, and the point where the principal axis meets the image plane is called e

12
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principal point P and the length from the optical center to the principal point is called the

focal length f.

\

mage plane

principal axis f

camera
centre

Figure (2.4): Pinhole Camera Geometry & the vertical triangulation of the pinhole
Camera (Hartley et. al. 2004).

The central projection mapping from world point to image coordinates is described by the

following equation (Richard Hartley, Andrew Zisserman, 2004)

- @

Where f, f,, represent the focal length of the camera in terms of pixel dimensions in the
x and y direction respectively. (u,w) represent the projected point on the image plane x
and y axes respectively in terms of pixel dimensions. (x, y, z) represents the world point
position in the coordinate frame of the camera as shown in Figure (2.4). (x,, y,) are the

coordinates of the principal point in terms of pixel dimensions in Figure (2.5).

T ycam

Yo~ pe —>
X cam
YA
- |
X Xn
Figure (2.5): Image x_y and camera xcam_ycam coordinate systems (Hartley et. al.
2004).

Note that under the assumption of flat road, we considered that the observed vehicle in
the same altitude of the ego vehicle, so we neglect the vertical projection ().

2.3.2 Stereoscopic Vision Model

The stereoscopic system consists of either one optical sensor which can be moved so that
its relative positions at different times are known, or two (or more) optical sensors always

maintaining the same known position with respect to each other. If more than one sensor

13
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is utilized, it will be assumed that they are all identical, and the effect of each optical
sensor (e.g., a camera) will be modeled as though it were an ideal pinhole camera (Nicolas
Alvertos, 1989). Figure (2.6) shows the bird view of the lateral stereoscopic model where
the two cameras are perfectly parallel have the same focal length f, and separated by a
translation in the x-direction between the left and right camera optical centers, this
translation is called baseline 6. In Figure (2.6) the x-z axis of the stereo cameras
corresponds to the ego longitudinal, lateral axis respectively. Given a real-world point
(X Y,2) in frame coordinates originated at the left camera optical center, «/, urare the
horizontal projection of (X, Y;2) on the left and right camera image planes respectively
as demonstrated in Figure (2.6), Applying equations (2.1) to get the horizontal

projections:

X
ul = x + x, (2.2)
(x—=Db
r= L 7 b) + X, (2.3)
z
The distance between those two projected points is known as “disparity”,

d=ul—ur (2.4)
1 x |
‘ b t X-b / World Point {X,Y,Z)
| ! s
| ! a

: s
: [ e //
| z
z : 7/ /
| ' e /
| R
| /l/ /
| - /
I 4 | /
I / |
!
|
| P
\ - /
| e 1 /
| 4 o
uL E— < — ur —‘—|/ Image right

Figure (2.6): The lateral stereoscopic disparity and depth

Substituting equations (2.2), (2.3) in equation (2.4) we get

14
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d= " (2.5)
For known disparity, it’s possible to calculate the depth of the projected point:
_ fxb
zZ== (2.6)

Substituting equation (2.6) in (2.2), and isolating x in the left side we get
_(ul—x).z _ (ul—xp).b
fx d

Equations (2.2,4) forms the nonlinear measurement model while equations (2.6,7) forms

2.7)

the linear measurement model of the stereo vision.

2.4 Dynamic System Modeling

The development of appropriate dynamic model that accurately describe the
evolution of the tracked object status and efficiently handles the uncertainty of the
excitation and disturbances is the most challenging issue in tracking problems. There are
many models that were developed in the last decades for on-road vehicles. This thesis
deals with the curvilinear models that theoretically could describe the motion of road
vehicles very accurately, errors may result from highly dynamic effects such as drifting
or skidding. While models which are able to cope with such effects do exist like the
realistic model proposed in (R. Pepy, A. Lambert, and H. Mounier, 2006), they will not
be considered here for two reasons, most Intelligent Transportation Systems applications
(ITS) are designed for scenarios with non-critical dynamics. Furthermore, the information
which are necessary for estimating the additional parameters (e.g. slip from every tire,
lateral acceleration) are not observable by exteroceptive sensors. Thus, such models can
be used for estimating the ego vehicle’s motion only (Robin Schubert, Eric Richter, Gerd
Wanielik, 2012).

2.4.1 Simplified Bicycle Model

The vehicle driving dynamics under normal conditions are approximated by a
single-lane model of the Ackermann Steering Geometry in Figure (2.7), where the left
and right wheels are merged at the axle’s center, yielding two-wheel model steering
geometry usually referred to as bicycle model. (D. Schramm, M. Hiller, R. Bardini, 2014).

15
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Figure (2.7): Ackermann Steering Geometry simplified bicycle model (Barth, 2010)

The vehicle moving direction x with respect to a global world coordinate system is
composed of the yaw angle v, and the side slip angle S, as

X =Y+ Bc (2.8)
The x-z plane translation of the center of mass C whose position is (x, z;) with respect

to a static world coordinate system results from the following observations

dxc Zc

d
i cos(U + Be¢), a5 sin(P + B¢) (2.9)

with velocity v = ds/dt, where s represents the arc length,

dxC _ dXC dt _ XC dZC _ dZC dt _ ZC
oo @ ds v PRI (2.10)
xXc =vcos(Y+ B¢), Zze = vsin(y + B¢) (2.11)

At normal conditions, the side slip angle 8. becomes negligible at the center of the rear
wheel.

X, = vcos(y), Z, = v sin() (2.12)
equation (2.12) represents the principal simplified on-road vehicles motion that form the
basic background for all bicycle model based advanced variants, so now we are ready to
develop two of those variants called Constant turn rate and constant polar velocity model
(CTRPV) Constant turn rate and constant acceleration model (CTRA), through the
following systematic procedure:

1. Statement the motion assumptions interpreted into differential equations and

16
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deriving the continuous-time state space model for static ego vehicle.

2. Discretizing the state space model using the impulse discretization and zero order
hold (ZOH) discretization.

3. Augmenting the ego vehicle motion to get the discrete-time state space model for

moving ego attached coordinate frame system.

The dynamic models CTRPV, CTRA would be developed for the observed vehicle
that is moving in the horizontal plane X-Zin Figure (2.8).

o 3 X

The ego
vehicle

Figure (2.8): The observed vehicle in the coordinate frame of the ego-vehicle

Consider a coordinate frame system that is originated at the optical center of the left
camera such that the z-axis is in the direction of the ego vehicle forward direction, the

x-axis is in the right direction of the ego vehicle.

2.4.2 CTRPV: Constant turn rate and constant polar velocity model

the state vector of CT-CTRPV and DT-CTRPV models consists of the relative position,
velocity, heading angle and heading turn rate of the observed vehicle as following:

Xcrrev = [%,2,v,h, 0]"

2.4.2.1 The continuous-time state space model

In CTRPV modeling its assumed that the object is moving at constant polar velocity v
and constant turn rate w perturbed by zero mean gaussian white noises a, a respectively
vV=a=qu(t) (2.13)

W= a=q,(t) (2.14)

17
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So, by coupling the differential equations (2.12-14) and seperating exitation inputs
a and a from the state transition function, we get continuous-time state space model of
the CTRPV:

[x] [v cos(h)] [0]

_ | Z | v sm(h) 0

Xcrrpyv (t) = | 1% | f(XCTRPV(t)) +q(@) = | | + rj (2.15)
K Lo 1L

2.4.2.2 The discrete-time state space model

CT- CTRPV model could by discretized by the following exact solution

t4+T
Xerrpy(E+T) = Xergpy(t) + f (f(XCTRPV(T)) + CI(T)) dr (2.16)
¢

where T is the sample time period from k to k + 1 instants (F. Gustafsson and A.
Isaksson, 1996), the solution could be rewritten as

Xie+1 = ferrev (Xi) + Gerrpy (Xi) gk (2.17)
where k denotes sampling instants, g, is the process model stationary zero mean

Gaussian noise, forrpy: R> = R® is the CTRPV model nonlinear state transition vector

function
2v wT wT
X +—sin (—) cos (h + —>
2 2
2v . (wTy\ . wT
ferppy = |2 T ——sin (7) sin (h + 7) (2.18)
v
h+ T

W

Gerrpy: R2*? is the affine model noise matrix formulated as input matrix, by zero-order-

hold and impulse input discretizing we get two variant input matrices,

_TZ -
—cos(h) 0
0 0 2
[0 0] T—sin(h) 0
Geok?V =11 ol , GV =12 ; 0 (2.19)
0 oJ
0o Tl 0 re
2
0 T
the characteristics of the process noise
E[qk] = E[qaqa] = [0 0] (2.20)
Q = cov[qi] = cov[qaqq]" = DIAG[oG0Z]" (2.21)
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Such that 62 is the variance of the forward acceleration by (m/s?), o2 is the variance of
the turn acceleration by (rad/s?). (Robin Schubert, Eric Richter, Gerd Wanielik, 2012)

Note that E[ ] denotes for the expected value mathematical operator or the mean, cov| |
denotes for the covariance mathematical operator, DIAG|[ ] denotes for the diagonal

matrix mathematical operator, those operators would be used in the rest of the thesis.

2.4.3 CTRA: Constant turn rate and constant acceleration model

the state vector of CT-CTRA and DT-CTRA models consists of the relative position,
velocity, acceleration, heading angle and heading turn rate of the observed vehicle as
following:

Xcrra = [%,2,v,a,h, w]"

2.4.3.1 The continuous-time state space model
We assume that the object is moving at constant polar acceleration perturbed by
zero mean Gaussian white noise, J and constant turn rate w perturbed by zero mean
Gaussian white noise, «,
a=]=q;(t) (2.22)
W= a = qut) (2.23)
So, by coupling the differential equations (2.12,22,23), and seperating of exitation inputs

J, « from the state transition function we get CT state space model of the CTRA

we get:
"X [vcos(h)] 107
z vsin(h) 0
Xerra(t) = Z = f(XCTRA(t)) +q(t) = 3 + ? (2.24)
h w 0
L] 0 L

2.4.3.2 The discrete-time state space model
Similar to the CTRPV, the discretization model of CTRA is

Xis1 = ferra(Xi) + Gerra(Xi) i (2.25)
where k denotes sampling instants, g, is the process model stationary zero mean

Gaussian noise, ferra: R® = R is the CTRA model nonlinear state transition vector

function
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— 1 -
x +

> [(vw + awT)sin(h + wT) + a * cos(h + wT) — vwsin(h) — a * cos(h)]
1
z+ > [(wvw — awT)cos(h + wT) + a * sin(h + wT) + vwcos(h) — a * sin(h)]
= 2.26
forna et (2:26)
a
h+ T
W

Gerra: R*? is the affine model noise matrix formulated as input matrix, by zero-order-

hold and impulse input discretizing we get two variant input matrices,
-3

—cos(h 0
— cos(h)
0 07 T3
0 0 —sin(h) 0
0 0 CTRA 2
0 O % 0
L0 T- T2
0 J—
2
0 T -

the process noise is characterized by o/ the variance of the forward jerk by (m/s°), o the

variance of the turn acceleration by (rad/s?). (Schubert et. al. 2012)
Elqr] = E[q;q4] = [0 0] (2.28)

Q = cov[ql] = cov[q]qa]T = DIAG[U,ZUOZC]T (2.29)

2.4.4 Th ego vehicle motion Augmentation

Now, the system dynamic model for moving ego vehicle would be derived through the
augmentation for the motion of the ego-vehicle through two consecutive stereo
sequences. First note that equations (2.17-19,2.25-27) infers the x, z, h at k + 1linstant of
the observed vehicle in coordinate frame of the ego at k instant. If we know the ego-
motion from k to k + 1time instants, as translational displacements Ax,,Az,, and
rotational displacements Ah,with respect to coordinate frame of the ego at k instant as
shown in Figure (2.9) we simply could derive the x, z, h at k + 1 instant of the observed
vehicle in coordinate frame of the ego at k+1 instant, by applying the translational

displacement Ax,, Az, and we get the translated observed vehicle position

Xk+1 [xk+1 - Axe]
= 2.30
[Zk+1]translated Zi+1 — Az, ( )
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Vgt 1, Ac+1

1\4—\—1

The ego Xic
vehicle

Figure (2.9): The translational and rotational motion of the ego vehicle

Then, by applying the rotational displacement Ah, transformation, we get the rotated
observed vehicle position and heading.

[Xk+1] - [ cos(Ah,) Sin(Ahe)] [xk+1] (2.31)
Zk+1d qugmented —sin(Ah,) cos(Ah )i Zk+1)ansiatea .
(hk+1)augmented = hy4q — Ahe (2.32)

In KITTI dataset ego-motion information Ah,, Ax,, Az, is incorporated from inertial

navigation system.
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Chapter 3
System Filter Design

and Implementation
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Chapter 3
System Filter Design and Implementation

Filtering basically means the process of filtering out the noise in the measurements
and providing an optimal estimate for the state given the observed measurements and the
assumptions made about the dynamic system (Jouni Hartikainen, Arno Solin, and Simo
Sarkka, 2011), the Kalman filter (KF) is considered the basic method for recursively
solving the linear state space estimation problems. For nonlinear dynamic system model
or nonlinear measurement model or both are nonlinear the Extended Kalman filter (EKF)
which is the classical extension of KF is often used.

EKEF has a few serious drawbacks, which should be kept in mind when it’s used:

1. the linear and quadratic transformations produce reliable results only when the error
propagation can be well approximated by a linear or a quadratic function. If this
condition is not met, the performance of the filter can be extremely poor. At worst, its
estimates can diverge altogether.

2. The Jacobian matrices (and Hessian matrices with second order filters) need to exist
so that the transformation can be applied. However, there are cases, where this isn’t
true. For example, the system might be jump-linear, in which the parameters can

change abruptly.

In many cases the calculation of Jacobian and Hessian matrices can be very difficult
process, and it’s also prone to human errors (both derivation and programming). These
errors are usually very hard to debug, as it’s hard to see which parts of the system produces
the errors by looking at the estimates, especially as usually we don’t know which kind of
performance we should expect.

In this chapter we review a systematic framework of the 1% order Extended Kalman Filter
(EKF) then the equations of vehicle motion and stereo vision in chapter 2 are reformulated

compatibly with the EKF framework.

3.1 Extended Kalman Filter

The general model of the discrete time nonlinear dynamic system with nonlinear

measurement mode is:

Xee1 = f (X, k) + Gay (3.1)
Vi = h(xg) + 1y (3.2)
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where x;,., € R™ is the state, y,, € R™ is the measurement, g, ~ N (0, Q) is the process

noise,r, ~ N(0, Ry) is the measurement noise on the time step k. f is the nonlinear

transition function of the dynamic model, G is the noise matrix, h is the measurement

model function. the prior distribution for the state is xy, ~ N(Xy, Py) , where

parameters x,, P, are set using the information known about the system under the study

Like KF, also the first order EKF is separated to two steps: the prediction step, where the

next state of the system is predicted given the previous measurements, and the update

step, where the current state of the system is estimated given the measurement at that time

step. Figure (2.10) presents the flowchart of 1st order EKF for one cycle

Evalution

Known input

of the system {contred ar I‘Efstimati:nn Skate covsrianee
SENE0T of the state computation
(true state) mation)
State at #; Input at £ State estimate at f; State covariance at {y
=(k) ul k) #EE) E(k[k)
t
Evaluation of Jacabiane
Flk) = BI(k)
= dz £ e d{ |k
H(k) = ﬂﬁ[;+ 1)
T =L 4L
] ] ¥
() Transition to ey State prediction State prediction covariance
v
—— b+ 1) = o o Ek+ k)= — Plk+1|k) =
S, 2(k), (k)] + wik) Flk, 2(k]k), (k)] Fk)P{ER)F(EY + Q)
! t
Measurement prediction Residual covariance
Hk+ 1)) = Sk +1)=
Ak + 1,20k + 1|&)] Hik + 1Pk + 1) HE + 1) + Rk + 1]
] ! i
wik L] Measurement at #4, Measurement residual Filter gain
-——lz{k+1]= vk 4+ 1) = Wik+1)=
Al + 1,20k + 1)] 4 wik+ 1) sk 4 1) = 2k + 1]k) Pik+ URIH(k + 1Y 50k + 1)
+ i
Updated state estimate Updated state covariance
k4 1lk+1)= Pl 1k + 1) = Pk + 1|k}
Elk+ k) + Wik + Uelk+ 1) | —W(k+ 1Sk + DW(E+1)

Figure (2.10): Flowchart of 1 order EKF (one cycle) (Bar-Shalom, Y., Li, X.-R., and

Kirubarajan, T., 2001)

The two steps of KF is formatted as the following equations, (Sarkka, 2007);

Prediction step:

Predicted (a priori) state estimate

Predicted covariance estimate

J?k+1|k = f(fkuo k)

(3.3)

Prevjie = Ee(Ripior ) P BT (Riepier k) + GQRGT - (3.4)
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Update step:

Innovation or measurement pre-fit residual Vi = Vi — R(Rir1j k + 1) (3.5)
Innovation (or pre-fit residual) covariance Sk= Hka+1|kH,f + Ry, (3.6)
Optimal Kalman gain Ki= Pes1cHy St (3.7)
Updated (a posteriori) state estimate Rir1ke1 = X1 + KiJk (3.8)
Updated (a posteriori) estimate covariance Pisijker = (U — KeHy) Py i (3.9)
Measurement post-fit residual Yk = Yk — HxXyr1jk1 (3.10)

3.2 Model Equations

Now we would reformulate the equations of vehicle motion in the form of equation (3.1),

by combining the equations (2.17-21) and (2.31) we get the augmented CTRPV model:

2v oT oT 2v wT wT
| cos(Ah,) [x + Zsin (7> cos <h + —) — Ax,] +sin(Ah,)[z + Zsin (7) sin (h + 7) - Az, ]

=

2

. 2v . /wT wT 2v . (wTy . wT
= |—sin(Ah,) [x + — Sin (T) cos (h + 7) — Ax,] + cos(Ah,)[z + — Sin (T) sin (h + 7) — Az, ]

N

——
=<
—

v
lol,, | h + T — Ah, I
L 9 ],
- ]
—cos(h) 0
7?2 0 0
—sin(h 0 0 0
| [z sin®) or |t of |[3] (3.11)
T 0 Galy
2 00
f 0T
0 > k
0 T
and combining the equations (2.25-29) and (2.31) we get the augmented CTRA model:
[x] COS(Ahe) * Xtranslated + Sin(Ahe) * Xtranslated
z —sin(Ahe) * Zeransiatea + COS(Ahe) * Ziransiatea
(vl _ v+al
a a
H ll h+ wT — Ah, Jl
Wk+1 W k
_T3 -
Zcos(h) 0
T3 00
T2 |0 0| q;
+ C o OR |- ¢ [Qa]k (3.12)
N [0 oJ
T2 0T
0 7
0 T

where

1
[(vw + awT)sin(h + wT) + a * cos(h + wT) — vwsin(h) — a * cos(h)] — Ax,

Xtranslated = X + w2
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Zeransiated = Z + % [(—vw — awT)cos(h + wT) + a * sin(h + wT) + vwcos(h) — a * sin(h)] — Az,
Such that for both models we have two input matrices (G) according to the discretization
(ZOH and impulse respectively). In the prediction step the Jacobean of the transition
function is required to be computed, So the Jacobean of the CTRPV augmented model is:

[ c(Ah,) s(Ah,)A13A14415]
—s(Ah,)c(Ah,)A234244,5

0Xp41
Fx=| x|~ | © 0 1.0 0 (3.13)
k 0 0 0 1 T
0 0 0 0 1
Where
Ars = c(Bhe) ZEL 4 5(Ah,) « 72, Az = =S(8h) ZE 4 c(8h,) 2t
Oxpy1 2 (wT wT 0Zyy1 2 (wT) ( wT)
avk _(L)S(2>C<h+ 2>‘ 6vk _(l)s 2 s+ 2
OXf+1 0Zk41 Oxk+1 0zp41
A1,4- = C(Ahe) ohy + S(Ahe) * ohy !A2,4 = _S(Ahe) ohy + C(Ahe) * ohy
Oxpy1  —2v (T T 04y 2V (wT) < a)T)
ohe w5(2>5(h+2)‘ oh, w7 )\t
OXk+1 0zk4q Oxk+1 0zk41
A1’5 = C(Ahe) m + S(Ahe) * T’ A2‘5 = —S(Ahe) m + C(Ahe) * m

OXpyr VT <a)T) (h+a)T) 2v <wT) (h_l_wT) vT <wT) (h+a)T>
do,  w \2)¢ 2) w2\ 7)€ 2 ) W\ 2)° 2

_ b wT vT wT\ 2v | (0T vl . (wTy . b wT
= [eos (n+ )+ [Zreos () - oo (TN - [ om () sm (4 )
024y VT

wT b wT 2v /wT b wT vl /wT b wT
oy —:C<7)S( +T)_ES(T)S( +7)+$S(7)C( +7)

—sin(n wT vT T 2v . (wT vl  (wT b wT
= S‘"( +7)* » 8 (7)‘?“‘(7)] +[:S‘“(7) COS( +7)]

The analytical expression for the Jacobean of the CTRA augmented model were obtained
using the MATLAB Symbolic Math toolbox as shown in Analytic CTRA_JAC.m in
Appendix B. The expression is very complicated and long to be written textually in the

thesis.

3.2.1 Numerical aspects
In the context of implementing the prediction step of the filter, the transition functions

ferrpvs ferra @nd their Jacobeans Fergpy,, Ferra, Where implemented as MATLAB

functions, since they contain division by w terms which could cause filter instability in
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the case of division by zero numerical error at zero w those terms are substituted by its

limit as w tends to zero, for CTRPV transition function :

. (2v . (wT wT

(1»1_% {I sin (T) cos(h + T)} = vTcos(h) (3.14)
. (2v . (wTy T )

(1‘)1_1% {Z sin (7) sin(h + T)} = vTsin(h) (3.15)

for CTRA transition function :

1
lirr}) {p [(vw + awT)sin(h + wT) + a * cos(h + wT) — vwsin(h) — a * cos(h)}
= (2vT + aT?) * cos(h)/2 (3.16)

1
lim {? [(—vw — awT)cos(h + wT) + a * sin(h + wT) + vwcos(h) — a * sin(h)}

w—0
= (2vT + aT?) * sin(h)/2 (3.17)
And for the Jacobean of CTRPV transition function:
vT2sin(Ah, — h)

lim A; ; = Tcos(Ah, — h), lim A; 4 = vTsin(Ah, — h), limA;5= (3.18)
w-0 w-0 w-0 7’ 2

. , _ , vT%cos(Ah, — h)

lim A, ; = —Tsin(Ah, — h), lim A,, = vTcos(Ah, —h), limA,; = (3.19)
w-0 7 w-0 7 w-0 7 2

Equations 3.11-19 are implemented in CTRPV.m, CTRA.m and JAC_CTRPV.m files.

The numerical Jacobian for CTRA based on the following numerical derivative:

0xs1  Xpers (X, Zie, Vi, A, Ay 0 + Aw) — Xpeyy (X, Zg, Vi, A, Ry, 0)

EP A :Aw is small enough

is also implemented as function handle in num_JAC_CTRA.m file, see appendix B for
all MATLAB files.

3.3 Measurement Equations

3.3.1 Nonlinear measurement model

The lateral stereoscopic vision system equations (2.3) and (2.5) is reformulated in the
nonlinear measurement model of equation (3.2) as following:
fre X
+x
_ ulm _ _ 7 0 TuL
Y, = dm] =h@) +ne=| 7+ [Ta] (3.20)
VA

Where m subscript denotes measured quantity, , = [ry.74]" is the measurement

stationary ~ Gaussian  noise  with zero mean and R  covariance,
E[re] =[00]7,R = cov[r] = DIAG[O’LZILO'C%]T

In the update step the Jacobean of the measurement model function is required to be

computed, So the Jacobean of h(X) is
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fe X

X
e |7 Tz 000 291
X = ox - fxb ()
x o ==~ 00 0
V4

3.3.2 Linear measurement model
The lateral stereoscopic vision system equations (2.6) and (2.7) extract the observed
vehicle position (x,z) relative to the ego vehicle left camera optical center; assuming

additive noise, the linear measurement model for CTRPV model becomes,

- H

1 0 0 0 O 7
[Zm . :HcTRPV-chRPVk+Tk = [O 10 0 0]|Z| + [T;C] (3.22)
L),
and the linear measurement model for CTRA model becomes,
r’z‘1
X 1 0 0 0 O 7
[ZZ:Ik = HCTRA'XCTRAk+rk = [0 1.0 0 0 | | + [x] (323)
h]

Where m subscript denotes measured quantity, r, = [r,7;]7 is the measurement
stationary ~ gaussian  noise  with zero mean and R  covariance,
E[ng] =[00]7, R = cov[ry] = DIAG[c202]"

3.3.2.1 The Linear Measurement Noise Analysis

For the selected test data of KITTI the stereo vision parameters are ( f, 721.5 pixels, b
0.54 m, x, 609.556 pixels ), and the measurements variance was computed In chapter 5
as oy = + 0.8408 pixel and g,,; = + 13.83 pixel, So for these parameters the linear
measurement model noise [r.r,] is analyzed. [r.r,] is depending on nonlinear

measurement model noise [y, ;] according to the following relations:

[ [ ~ (ul—x0).b 4 b 324
a lul - 0 ul — dz O’d dUul ( . )

_ fub
[ Ew l]ul = 7 04 (3.25)

Figure (3.1) depicts o, VS. g, for disparity in the range [5-35pixels]. For positive fixed

o, as ddecreasing o, increasing dramatically because d~2 term.
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longitudinal deviation (sigma-z : meter)

disparity (d: pixel)
dispaity dewviation (sigma-d : pixel)

Figure (3.1): 0, vs. d and a4
Figure (3.2) plots g, vs. zin the range [10m, 80m] its noted that point far 60m suffers -

7.952m error in longitudinal position due to o,.

sigma-z vs. longitudinal position when fixing sigma-d @ + 0.8408 pixel

\

R

-10

longitudinal z deviation sigma-z (meter)

-12

-14
10 20 30 40 50 60 70 80

longitudinal position z (meter)

Figure (3.2): g, vs. z for test data nominal a4
Figure (3.3) depicts o, Vvs. a,,; for disparity in the range [4,39] pixels equivalent to
longitudinal position z in the range [97.4, 9.99] meters respectively, for KITTI stereo
vision parameters, to be able represents the relation graphically we are fixing g, at
+0.8404 pixels and ul at 800 pixels as the our work in KITT], as the disparity d decreasing

(z increasing) so o, changes dramatically because d =2 term.
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sigma-x vs. sigma-ul for practical disparity range when fixing sigma-d @ +0.8408 pixel and ul @ 800 pixels

(s1910wW : x-ewhis) uoneirap uonisod [esare|

the disparity (d : pixels)

Figure (3.3): g, vs. g,; and g,

lateral projection deviation (sigma-ul : pixels)

Figure (3.4) shows g, vs. the depth z in the range [10,90m] at KITTI nominal

0 introducing chance of noise-

ul, oy and oy, it’s clear that at z ~74.5m we have g,;

by noise cancellation in the linear measurement model for future deep analysis.

sigma-x vs. z when fixing sigma-ul @ + 13.83 pixel ,sigma-d @ +0.8408 pixel and ul @ 800 pixels

© o 0
c &

(1219W) Xx-ewhis uoneIAp X [elare|

20 30 40 50 60 70 80 90
the longitudinal position displacement (z : meters)

10

Figure (3.4): o,.vs. zat KITTI nominal ul, g, 64
Figure (3.5) depicts o, Vvs. g,,; at fixed z = 74m for v/ in the range [700,1200 pixels] at

nominal o; for d = 5.2653 pixels its clear that as ¢/ increasing (z increasing)

o, decreasing linearly.

o
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sigma-x vs. ul for practical disparity range when fixing sigma-d @ +0.8408 pixel and disparity @ 5.2653 pixels

- o ™

lateral position deviation (sigma-x : meters)

1200

ateral projection dewviation (sigma-ul : pixels) 15 700 the lateral projection (ul : pexils)

Figure (3.5): o, vs. gy, ul for KITTI nominal d, a4

Figure (3.6) shows g, vs. x in the range [10m, 60m] for KITTI nominal disparity, o, and
oy - also, when x = 19.74m we have o,~ 0, introducing chance of noise-by noise

cancellation in the linear measurement model for future deep analysis.

sigma-x vs. ul for practical disparity range when fixing sigma-d @ +0.8408 pixel , disparity @ 5.2653 pixels and sigma-ul @+13.83 pi
2

X:19.74
Y:0.01497

N

0 [ ]

lateral position deviation (sigma-x : meters)

10 15 20 25 30 35 40 45 50 55 60
the lateral position ( x : meters)

Figure (3.6): o, vs. x for KITTI nominal d, a4, g,
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3.4 Real Data Processing

All sensor readings of a sequence are zipped into a single file named by its recording date
and number as shown in Figure (3.7). Timestamps are stored in timestamps.txt per frame
and sensor readings are provided in the corresponding sub-folders. For each sequence,
the dataset provides the object annotations in form of 3D bounding box tracklets and a
calibration file (Geiger et. al. 2012).

date/
L date_driwve/
b——date_drive.zip { }
image_0Ox/ x={0,..,3
data/

I frame_number.png
timestamps.txt
oxts/
data/
frame_number.txt
dataformat.txt
timestamps.txt
velodyne_points/
data/

I frame_number.bin
timestamps.txt
timestamps_start.txt
timestamps_end.txt
b——date_drive tracklets.zip

Il tracklet_labels.xml
p——date_calib.zip
calib_cam to_cam.txt
calib_imu_to_welo.txt
calib_welo_to_cam.txt

Figure (3.7): Structure of the provided Zip-Files that stores all KITTI sequences (Geiger
et. al. 2012).

The sensors are prepared for the estimation algorithm as the following diagram

GPS\IMU
Inertial KITTI Development Kit
Sensors

(Ax,, Az,Ah,)

= (G z v, wa)
Extended
Kalman

Evaluation
Criteria

Stereo Stereo Inverse RMSE

Vision Disparity measurement

Laser (%) Yo, T7) Laser scanner to left camera transformation
Scanner + center to rear translation

Figure (3. 8) The sensors data flow diagram

Inertial Sensors data: The information of the ego vehicle motion between each two
successive stereo frames (Ax,, Az,Ah,) are extracted from OXTS (GPS/IMU) data that
provides 30 different GPS/IMU values in a text file in the geographic coordinates
including altitude, global orientation, velocities, accelerations, angular rates, accuracies
and satellite information.
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Laser scanner data: The Laser scans are stored as floating-point binaries where each point

is stored with its (x-y-2) coordinate and an additional reflectance value

‘ > * x>
e®* e @ o B N
5 0008000000000 0000000
PR b < 246.¢ EREEE A AR A
- o 0000 Y:211.6 PERE R R
0000060000000 300000000 004 : e
NIEXE . A ER R XXX 2 * -
.
000”00000“00000‘!0000“00\‘

me
- oS00 0 0e ¢ PUNDNNRSRIMERS § . 0t 4500000008600 00000000040
S — S emsesesecsssssssosem T eeetmsetssnssssmettony
”..‘,.“’oooo~0000g& 000“0000“00000”000.“

eoe? ; s eossstetBetsss et le

se 000 Ms0soss000n Sl CL st ttotesssslnnsdssnisoone
e Y. X x|

5600 6000000000
6000 S000000

Figure (3.9): extraction of the observed point image position (u, v) for frame no. 45

As shown in Figure (3.9) the laser scanner frame data were projected on the corresponding
left camera image, the position of the interested point in the image plane (v,w) were
extracted manually, its corresponding position in the laser scanner coordinate system was
retrieved then transformed into the stereo coordinate system using the transformation
matrices in the calibration file of the interested sequence.

Stereo vision sequences data: since the rectified images are available in the dataset, so we
could use disparity function in MATLAB which returns the disparity map of two equi-
dimensional rectified images, such that the disparity of pixel located in (¢, v)in the left
camera image is the ¢/ row, /" column element of the disparity map. So, we extract the
disparity of the observed point over all the frames that capture the vehicle and using the
lateral stereoscopic model equations we measure the (x, z) position of the observed point
in the ego stereo vision left camera coordinates frame system. For each dynamic object
within the left camera’s field of view, KITTI provide annotations in the form of 3D
bounding box tracklets. Represented in Laser scanner coordinates, the tracklets are stored

in date_drive_tracklets.xml. Each object is assigned a class and its 3D size (height, width,

length). As illustrated in Figure (3.10), the level of occlusion and truncation is specified.

Figure (3.10): KITTI annotations: 3D bounding box tracklets in Laser scanner
coordinates (Geiger et. al. 2012)..
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As shown in Figure (3.11) the position data by KITTI bounding box is for the center of
the observed vehicle. Since we are interested in the position of the center of the rear or
the front (the visible and measured points by the stereo vision), it is derived in equations
3.26-3.27

Coordinates

left camear
coordinates

Figure (3.11): The position and yaw of annotated 3D bounding boxes in velodyne, left
camera coordinate system (Geiger et. al. 2013).

l l
Xrear = Xcenter — E COS(TZ), Xfront = Xcenter + E COS(TZ) (3' 26)

2
Where /is the length of the observed vehicle, rzis its heading from velodyne x-axis. So

in order to convert sz from left camera x-axis h we apply eg. 3.28

[
h=TZ+E (328)

3.4.1 Assigning the coordinate frames/Matrix transformations

L. L.
Yrear = Ycenter — Esm(rz) ) Yfront = Ycenter T > sin(rz) 3.27)

(All heights wrt. road surface ]

. QAlcamerahmgh{flﬁSmQ
Wheel § axis Cam 1 (gray) =
(height: 0.30m) Cam 3 (color) D‘ I 006 m
: Cam-to-CamRect Velgdyne laserscanner
0.54 m Et(CIamRect x(hmght: 1.73 m) i0.05m
: -to-lmage ‘ _‘ 4______ [
1.60 m y 4 |-+ Cam 0 (gray) 4-&/ vt IMU-tO-VEIO  msjerseses
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Figure (3.12): The Sensory Package Setup (Geiger et. al. 2013).

Figure (3.12) illustrates the dimensions and mounting positions of the sensors (red) with
respect to the ego vehicle body. Heights above ground are marked in green and measured
with respect to the road surface. Transformations between sensors are shown in blue. The

coordinate systems are defined as illustrated in Figure (2.2) and Figure (3.11), i.e.:
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e Camera: X =right, y = down, z = forward
e Velodyne: x = forward, y = left, z = up
e GPS/IMU: x = forward, y = left, z=up

The rigid body transformation from Laser scanner coordinates to left camera coordinates
is given by KITTI for every day of recording in calib_velo_to_cam.txt in terms of 3*3
rotation matrix and 3 translation column vectors. The transformation

(2011_09_26_drive_0029 sync) sequence of test data no. 1 rigid body by the dataset is

given by:
X 0.0075 -1 —0.0006] x 0.0041
[)’] = 10.0148 0.0007 -—0.9999 [Y] + [—0.0763 (329)
Z-left camera 0.9999 0.0075 0.0148 1'zlpei0ayne —-0.2718
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Chapter 4
Observability

In this chapter we discuss the observability property of our system. The number of
observable states of linear time-invariant (LTI) system equales the rank of the
observability matrix which can be formulated from the system matrix A, and the output
matrix C. Thus, the output matrix in the measurement model and the system matrix can
be derived from the CTRPV and the CTRA models.

4.1 Observability of CT-CTRPV model

Look at CT-CTRA model in equation (2.15) in the form X = f(X) + U, we got the
linearized system matrix Aqrgpy Via computing the Jacobean of the state transition
function f(X)

9%, 9%, [0 0 cos(h) —vsin(h)O]
ox;  aw{ |0 0 sin(h) vcos(h)O]

Acrrpy = |ag§() X® = |ai. sl |= 10 0 0 0 o (4.1)
v .. 2@ 00 0 0 1

Acrrpy depends only on h, and v,. For the linear measurement model in equation (3.22),

the observability matrix O is

10 0 0 0
01 0 0 0
0 0 ctchy—-vs(h) O
H 0 0 s(h) ve(h) O
_ |HAcrrev| _ [0 0 0 0 0
0= : o0 o 0 -—wvs(h) (4.2)
HA gpy 00 0 0 wc(h
00 0 O 0
L0 .. 0 dious

From analytical review of O, we say that:

1. The zero polar velocity (v = 0), yields last two columns to be zeros reducing the
rank to 3 (which means that there are two states unobservable, that are related to
the zero columns which are the last two states: the heading angle /#and the angle
change rate w)

2. The 3 and 4" columns are identical if

a. c(h) =—-vs(h)
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b. s(h) = vc(h)

. Therefore,

—— ¢2(h) + s?(h) = 0 which is impossible,

1%}
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the CT-CTRPV model is observable for all of its state space unless (v = 0). Using
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MATLAB, we numerically examine the observability on the space and the results were

typical.

the heading angle (deg)

-200

-50

the polar velocity (m/s)

Figure (4.1): The observability surface of CT-CTRPV model

CTRA model

4.2 Observability of CT

Looking at CT-CTRA model in equation (2.24) in the form X

f(X) + U, we get the

linearized system matrix A rra Via computing the Jacobean of the state transition

functionf (X) such as

Lon)
™
<
N—r
cCo oo
=
(h
S %
.ﬂmOOO
S
_U
co—HoOoOo
N
< <
d,\,W\OOO
O-l
O wn
cocoocoo
coo oo
I
N
&
>
N
S|
P 5
§e}

ACTRA

As in CT-CTPRYV analysis, Aq-rradepends only on h, and v. For the linear measurement

model in equation (3.23) the observability matrix O is such as
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1 0 O 0 0 0
01 O 0 0 0
00cth) 0 —wsth) 0
H 00sth) 0 weh) O
HAcrra 00 0 c(h) 0 —wvs(h)
0 = CTRA| — 4.4
CTRA : O 0 0 S(h) O vC(h) ( )
HAR 2 00 0 0 0 0
00 0 0 0 0
L0 .. 0 “10%6

From analytical review of O, rg4,We say that:

1. The zero polar velocity (v = 0), yields last two columns to be zeros reducing the
rank to 4 (which means that there are two states unobservable, that are related to
the zero columns which are the last two states: the heading angle /#and the angle
change rate w).

2. The 3 and 5™ columns or the 4" and 6™ columns are identical if both

a. c(h) = —vs(h)

b. s(h) = vc(h)
Fo
CT-CTRA model is observable for all of its state space unless (v = 0). Using MATLAB,

we numerically examine the observability on the space and the results were typical.

which yields c?(h) + s?(h) = 0 which is impossible , Thus, the

numer of the observable states

200

the polar velocity (m/s) -50 200 the heading angle (deg)

Figure (4.2): The observability surface of CT-CTRA model
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4.3 Observability of DT-CTRPV model

Discrete time CTRPV nonlinear model where the input part seperated from the state

transition part is

[ 2v . (wT b wT\1
2 x+wsm(2)cos( + 2) [0 O]
[ Z | 2v . (wT\ . wT 0 0
lv] = Z+ZSIH (7) sin (h+7) +[T ijk (4.5)
[hJ v 0 0
W-k+1 h+ wT 0T
w k

By first order linearization, we get the system matrix A via computing the Jacobean of

the state transition part.

2 (wT) (h_l_a)T)—Zv (a)T) (h+wT)axk+1'
1 0 o \2)¢ 2 ) w 2\ 2)° 2 ) dwy,
0f @) RPN i Y (Y Lo Y (i
A=‘ o =lo o 3s(3 sh+2 55 ch+2 P (4.6)
x© [0 0 1 0 0
0O O 0 1 T
0 0 1
Where

0xp41 VI (T T 2v (wT wT\ vl (wT T
der =2 e(F)elr )= Tes (F)elr+ ) -5 (5)s(r+ )
0z41 VI (T wT\ 2v (T wT\ vl (T wT
a_wk=ZC<7>S(h+7>"ES(7>S(h+7)+ZS(T)C(h+T)

It’s clear that the matrices A and O only depends on v, h, w, and T, such that they are

very complicated to be analyzed mathematically.

the observability region at T=0.1 sec ,v=0 m/s

numer of the observable states
w
!

the heading angle rate (deg/s) 200 -200 the heading angle (deg)

Figure (4.3): DT-CTRPV observability surface at 0.1sT, 0 m/s v
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Thus, we use Matlab for visual examination with fixed T at the nominal sampling time
(0.1 sec) in KITTI dataset and draw the rank of O as a function of
heading angle h from — 180 to 180 deg, and w from -180 to 180 deg/sec for some
meaningful values of v (0 m/s, 10 m/s and 1e+10 m/s). The results are shown in figures
(4.3 and 4.5). At zero velocity, the observable states are reduced to three that is exactly
matching the CT-CTRPV analysis.

the observability region at T=0.1 sec »=10 m/s

numer of the ohservable states
(4}
!

200

0
-100

the heading angle rate (deg/s) -200 200 the heading angle-{deg)

Figure (4.4): DT-CTRPV observability surface at 0.1 sampling time and 10 m/s polar
velocity

At 10 m/s velocity the model is fully observable in the space of heading angle (-180
deg to 180 deg), and for large scale angle rate. Since we concern the on-road vehicles
motion, this range is very good.

the obsenvability region at T=0.1,v=5.2e13

numer of the observable states

200 -200 the heading angle rate (deg/s)

the heading angle (deg)

Figure (4.5): DT-CTRPV observability surface @ 0.1s T,1e+06 m/s v
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By increasing the velocity exponentially and drawing the rank of O. we noticed that the
model was fully observable in the stated range. Until the velocity reached 5.2e+13 m/s,
the observable states are reduced to four for h ¢ [—180°, 15°]. This is because numerical
errors related to the numbers conditioning in MATLAB,; however, on-road vehicles
motion don’t reach this high velocity. Therefore, the DT model of CTRPV is fully

observable for all practical state-subspace.

4.4 Observability of DT-CTRA model

The discrete time CTRA nonlinear model state transition part is

] [ X+ %[(va) + awT)s(h + wT) + a * c(h + wT) — vws(h) — a * c(h)] _
12] z+ iz [(—vw — awT)c(h + wT) + a * s(h + wT) + vwc(h) — a * s(h)]
= w “4.7)
|a| v+al
h a
lek+1 h+ wT
L w _k

It is very complicated to get the analytical solution for the Jacobean. however, we could
say analytically that linearized system matrix depends on (v, a, h, w, and T) but doesn’t
ever depends on the position x, z.

MATLAB is used for numerical computation of the Jacobean and for visual examination.
Again fixing T at the nominal sampling time (0.1 sec) in KITTI dataset, then drawing the
rank of O as a function of heading angle h from — 180 to 180 deg, w from -180 to
180 deg/sec for some meaningful values of v (0 m/s , 10 m/s and 1e+06 m/s) and a (0
m/s?, 10 m/s’and 1e+06 m/s?), the obtained results are shown in Figure (4.6-8).

the observability region of CTRA DT model at T=0.1 sec ,v=0 m/s, a=0 m/s?

numer of the observable states
N
ba

the heading angle rate (deg/s) 200 -200

the heading angle (deg)

Figure (4.6): DT-CTRA observability surface @ 0.1s T,0 m/s v,0 m/s? a
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AS shown in Figure (4.6) the zero velocity reduces the observable states to four which is
exactly matching the CT-CTRA analysis, while from Figure (4.7) and Figure (4.8) , we
could considered that the DT model of CTRA is fully observable for on-road vehicles
practical motion range (the velocity less than 2.5e0+7m/s and the acceleration less than
2.5e0+7m/s2).

the abserability region of CTRA DT model at T=0.1 sec =10 més, a=Tm/s2

nurner of the ohservahle states
(a3}
!

200

-100 0
the heading angle rate (deg's) -200 200

-100
the heading angle {(deg)

Figure (4.7): DT-CTRA observability surface @ 0.1s T,10 m/s v,1 m/s? a

the obserability region of CTRA DT model at T=0.1 sec v=25e7 mfs, a=2.5e7 mfs2

nurner of the ohservahle states
[a3]
!

200

. a
-100
the heading angle rate (degis) -200 200

-100
the heading angle (deg)

Figure (4.8): DT-CTRA observability surface @ 0.1s T,2. €7 m/s v,2.57e7 m/s® a
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4.5 Summary

The observability property for the proposed approach was inspected in this chapter
through the analytical and the numerical calculation of the observability matrix O rank.
Table (4.1) summarizes the results since it depicts the number of observable states by the

variant models, the unobservable states are stated in {} brackets

The model v=20 [v] > 0 W € [—m, m]
CT-CTRPV 3 {hw} 5 5
CT-CTRA 4 {h,w} 6 6
DT-CTRPV 3 {h,0} 4 5
DT-CTRA 4 {h,w} 5 6

Table (4.1): The system observability property summary

It’s found that for nonmoving observed vehicle (v = 0) all the continuous and discrete
time models could not estimate the heading and the turn rate. The continuous time models
are full observable over the rest state space. The discrete time models discretized by
KITTI dataset sampling time (0.1 s) are full observable for all practical vehicles speeds
for the observed vehicles turn rate in the range w € [—m, w]rad/s, also they are full
observable for very high speeds that exceeds le+6 m/s, that is because through the
observability test its assumed that the observed vehicle position observations (x, z) are
available and unlimited, that is could not be achieved by a real stereo vision system
because its limited range. So, for limited range observations of the observed vehicle
position the maximum observable speed v,,,, iS limited by the least distance that the
observed vehicle travel in the stereo vision field of view (FOV) divided by the period

required for sufficient number of the observed vehicle position observations.

Figure (4.9) shows that the least distance dlist that the observed vehicle could interpret
through the stereo field of view FOV achieved if the observed vehicle intersects FOV
perpendicular on stereo z-axis with zero turn rate. From simple triangulation for KITTI
stereo horizontal FOV of 90 deg the least distance is [dist = 2 * z], where z represents

the longitudinal distance of the observed trajectory from the stereo.
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Figure (4.9): the trajectory of vehicle interpreted the ego stereo FOV
In order to measure the polar velocity or heading it’s required that the stereo vision system
could capture at least two position observations which require three time samples at worst
case, while the measurement of acceleration or turn rate require three captured position
observations which require four time samples at worst case, so the maximum allowable
speed for KITTI stereo system is

_ dist 2%z
Vmax = T T 4w 01
Practically the on-road vehicles maximum speed of 200 km/h could be recognized if the

=5xz

observed vehicle inters FOV farther than 11m longitudinally.

45

www.manharaa.com




Chapter 5

Results and Discussions

46

www.manharaa.com



Chapter 5
Results and Discussions

The proposed approach was implemented using MATLAB. The performance of the EKF
depends mainly on the initial estimated state vector X’Om, initial estimated state covariance
matrix Pojo, the process noise covariance matrix @, and the measurement noise

covariance matrix R. In the following sections, the results of applying the developed
models would be shown, the impact of the listed factors would be discussed. The
evaluation metric of the estimation performance is the root mean square of the estimation

error.

5.1 Synthesized Data Set

The data of the observed vehicle motion were generated using CT-CTRA model, which

is implemented using Simulink model as shown in figure (5.1).
» 1
wdot >@—
h
» 1
adot =|X0—s |

jerk
dot !
vaof : XO_S
v

cos(u(1)) _1
X

Product %os

¢

¢

0

¢

sin(u(1)) zdot

Product1
initial conditions

Figure (5.1): The synthesized data generation simulink model

The model was excited by the initial conditions, the jerk and the turn acceleration inputs.
Then, the data of the observed vehicle position x, z were corrupted by predetermined
additive white noise to be used for the purpose of testing the linear measurement model

based filters. The nonlinear measurements (the left camera projection and the disparity)
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were generated using the parameters of our practical stereo vision system (baseline b of
54 cm, focal length f of 721 pixels, image plane center [x,, y,] of [610,132] pixels), also
were corrupted by predetermined additive white noise to be used for the purpose of testing
the nonlinear measurement model based filters. Data were classified into two categories:
free motion test data and practical on-road designed situations test data.

5.1.1 Free motion test data

In this category, the CT-CTRA model is excited by Gaussian white noise inputs jerk
~N(O, 0]2 m/s®) and turn acceleration ~N(0, o2 rad/s?). While the initial states were
determined arbitrarily, no constraints were assumed on the position, heading, polar
velocity, acceleration or turn rate, The EKF is provided by the true initial conditions
)?Ow, Py, the true model noise characteristics o/, 04, o, and the true measurement noise
characteristics o2, 02,062,502, the initial states could be fully deterministic, partially
deterministic or fully stochastic. In this section, the performance of the filters with fully
stochastic initial conditions would be inspected, since it is the more realistic situation,
interested in the asymptotic convergence of the filter from wrong and far initial states.

5.1.1.1 Known stochastic initial conditions
This is the situation where the initial estimate variance Py, is known, but the initial states
)?Ow are unknown, First we inspect the filter performance of the known fully stochastic

initial conditions for zero initial states, So the initial estimate covariance should be the
square of the true initial state for DT-CTRPV EKF:

- 2 -
2 |O| | 2 | 0 z2 0 0 O
XO|0 = |9| =10 ,P0|0 = Ccov 12\ = 0 0 vg 0 0 (51(1)
th [OJ MJ 0 0 0 K2 0
@lojo 0 Wl |9 0 0 wil
And for DT-CTRA EKF :
pY 01 oz 0 0 0 0 0
P 0 sz] 0 g2 0 0 0 0
. s o ~ | ‘ | 1o 0 w2 0 0 o0
h 0 l@LlO 0 0 0 0 h3 0
Wlojo - 10- 0 0 0 0 0 wil
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Figure (5.2) shows the filter configuration of known stochastic initial conditions with
known process, measurement variance and initial conditions of (5.1a)

‘ measurement noise ‘
~N(0,a2)
~N(0,02)

Free motion
] =~N(0,0}) True states X Zm
a=~N(0,02) x,z,v,hoa

Xoj0 = 0.Pgjp = X§

Initial conditions Q =daig (0]2, a2)
Xo, Zg, Vg, ho, wo, Qg

'R = daig(c?,0?) |—

Figure (5.2): The filter configuration of known stochastic initial conditions with known
process, measurement variance and initial conditions of (5.1)

Table (5.1) depicts the RMS estimation error of the distance,v, h, w for 250 sec simulation
time of data generated by CT-CTRA model with initial conditions of
(x0,20, V0, ho, ag, wy) and Gaussian noise jerk, turn acceleration of ~N(0,a,2 m/s®),
~N(0,02 rad/s?) provided by the measured position corrupted by Gaussian noise of
~N(0,62 m),~N(0,02 m/s®), where the empty a row represents CTRPV_EKF results,

while the nonempty arow represents CTRA_EKF results.

Table (5.1): The RMS estimation error of CTRPV_EKF, CTRA_EKF with known
process, measurement variance and initial conditions of (5.1a)

CT-CTRA synthesizing data model parameters The RMS estimation error
Xo | 2o | Vo | ho | G0 | wo | 0f | 0f | 0% | 0f | of | dist | v h w a
50 [50[20(0 |2 |15 |2% |22 |22 |2%2 |31.6*|18 6.13 | 5.96 |9.04

50 [50[20 (0 |2 |15 2% |22 |22 |2% |31.6*|167 |62 |[216 |73 |043

Figure (5.3) shows that the estimated trajectories converge to the true trajectory with
RMS estimation error of 1.8m ,1.67m of CTRPV_EKF, CTRA_EKF respectively.
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the model time update
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Figure (5.3): Estimated trajectory by EKF configured as in Table (5.1)
Figure (5.4) shows very good polar velocity estimation with RMS estimation error of
6.13m/s, 6.12m/s of CTRPV_EKF, CTRA_EKF respectively over the whole estimation
period (250 seconds). However, the CTRPV converges in 5s while CTRA in 6s. CTRPV
is biased by about 2.65m/s steady error with less undershoot than CTRA.

180 J T T T 3 3
|
|
\

160 *‘. “\ -

‘ true polar velocity
140 | *—— CTRA-EKF- estimated polar velocity
+— CTRPV-EKF- estimated polar velocity

1
‘
‘
120ﬁ‘ L .
2 \
E 1004 + .
z |
= \
E sl o+ ]
o ‘
|
a0 tt

2 5N o e f
» S +++f+<t+
| 'h*‘**%*:,t‘**;

Ole- Soages® -

20 r r r r r
(0] 20 40 60 80 100 120

time (le-1 seconds)

Figure (5.4): Estimated polar velocity by EKF configured as in Table (5.1)

Figure (5.5) shows that the estimated heading by converges to the true heading in less
than 5 seconds with RMS RMS estimation error of 5.96 deg, 2.16 deg for CTRPV, CTRA
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8 T T T T

true heading

7 ®  CTRA-EKF- estimated heading 4
-+ CTRPV-EKF- estimated heading

the heading h:(rad)

0 lee r r r r r
(0] 20 40 60 80 100 120
time (le-1 seconds)

Figure (5.5): Estimated heading by EKF configured as in Table (5.1)

Figure (5.6) shows that the estimated turn rate converges fluctuating about the true state
in less than 8 seconds with RMS estimation error of 9.04 deg/s, 7.3 deg/s for CTRPV,
CTRA respectively.

2.5 T T T

L

. true turn rate
% hd CTRA-EKF- estimated turn rate
t+ —t—— CTRPV-EKF- estimated turn rate

the tum rate w; (rad/s)

-1.5 r r r r
(o] 50 100 150 200 250
time (le-1 seconds)

Figure (5.6): Estimated turn rate by EKF configured as in Table (5.1)

Figure (5.7) shows the convergence of the filter for the forward acceleration in 5 seconds
with noise fluctuating about the true with RMS estimation error of 0.43 m/s? for 250 sec
simulation due the far initial conditions.
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true forward acceleration
—— CRTA-EKF- estimated forward acceleration

the forward acceleration a: (m/sz)

el I I I I I I I I
0 20 40 60 80 100 120 140 160 180 200
time (1e-1 seconds)

Figure (5.7): Estimated acceleration by EKF configured as in Table (5.1)

The RMS estimation error listed in Table (5.1) doesn’t indicate steady error since all the
estimated stated converges to true states as shown in figures (5.3-7), the error RMS is
due to the pre-convergence error caused by the far filter initial conditions and the high

variance of the excitation.

Table (5.2) also depicts the RMS estimation error for 250 sec simulation time of data
generated with the same initial conditions and excitation as in Table (5.1), with variant
initial heading, where the empty a row represents CTRPV_EKF results, while the

nonempty a row represents CTRA_EKF results

Table (5.2): The RMS estimation error of CTRPV_EKF , CTRA_EKF with known
process and measurement variance and initial conditions of (5.1a,b) for variant initial
heading

CT-CTRA synthesizing data model parameters The estimation error RMS
Xo | Zo | Vo | ho |G |wo |0f | 0f |af|af | dist | v h w a
90 1.7 |533|315]| 6.3

1.695|6.03| 6.3 | 9.4 | 0.327
1.675| 58 | 0.25 | 6.88
168 |6.06| 0.1 |945| 04
1762 | 52 | 0.35)|9.11
189 | 59 | 05 ] 97 | 34

50 |50|20|270 | 2 |15 | 22 | 22 | 22 | 22

270

As shown in Table (5.1) and Table (5.2) at zero deg and 90 deg initial heading, both
CTRPV_EKF, CTRA_EKF estimated heading converges only near O deg with steady
error. And both filters at 270 deg initial heading, the filter heading converges with 2

possibilities near 180 deg with steady error (reverse trap) or near 360 deg steady error,
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noting that the reverse estimation trap does not always occur; we could say it has 50%

chance with the true estimation.

Table (5.3): the RMS estimation error of CTPV_EKF with variant known process and
measurement variances and initial conditions of (5.1a)

CT-CTRA synthesizing data model parameters | The estimation error RMS
Xo | Zo | Vo |ho|ao | wo| 02 | of o2 o? ol dist v h w
50 | 50 | 20 |90 | 2 | 15| 22 22 10? 10? 31.6° |3.05| 3531 | 479 8.38
50 | 50 | 20 |90 | 2 | 15| 6 82 22 22 126.5% | 1.68 | 5.58 5.92 25.3
50 | 50 | 20 |90 | 2 | 15| 0.1 | 0.1° 22 22 1.852 | 285 | 6.1 3.13 1.73

The experiments in Table (5.3) presents convergent estimation along all the simulation
period (250 seconds). It’s clear that the filter is still valid for very high measurement noise
variance, with increasing estimation error due to increased measurement noise. It’s also
clear that the filter is still valid for very high excitation inputs noise variance, with
increasing estimation error due to increased measurement noise such that’s results are the
more important since it proves the reliability of the estimator for practical high noisy
excitation of the synthesizing dynamic model dominant in generation the states.

Table (5.4): The RMS estimation error of CTRA_EKF with variant known process and
measurement variance and initial conditions of (5.1b)

CT-CTRA synthesizing data model parameters The estimation error RMS
Xo | Zo | Vo |ho| G0 |wo | 0f | of | 0f | of | dist | v h w a
50[50[20|90|2 |15 |22 |2%2 |10°|10%|243|133|274|7.82 |04
50502090 |2 |15 |6* |8 |22 |2%2 |335|6.6 |7.89|1826|15
50 5020|900 |2 |15 012|012 2% |22 |14 |[136|41 |115 |03

The experiments in Table (5.4) are convergent estimation along all the simulation period
(250 seconds). It’s clear that the filter is still valid for very high measurement noise
variance, with increasing estimation error due to increased measurement noise. It is also
still valid for very high excitation inputs noise variance with increasing estimation error
due to increased measurement noise. That results are more important since it proves the
reliability of the estimator for practical purposes since the high noisy excitation of the
synthesizing dynamic model dominant in generating the states. The closure of the
estimation model with the synthesizing model is passed while the estimator is still able to

converge the true states.
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Reverse Estimation Trap:

A critical situation of our filter which is called the reverse estimation trap is explained in
Table (5.5)

Table (5.5): The RMS estimation error of reverse trapped CTRPV_EKF with known
process, measurement variance and initial conditions of (5.1a)

CT-CTRA synthesizing data model parameters The RMS estimation error
Xo | 20 | Vo | ho |ag|wo|0f |0 |0f|0f| of |Dist| v h w

50 /50|20 (180 | 2 |15 |22 |22 |22 | 2% |31.6°| 1.7 |148.5|179.85 | 10.3
50 /50|20 (180 | 2 | 15|22 |22 |22 | 2?2 |31.6°|1.75|5.121| 8.25 |8.88

since the true initial heading is 180 deg while it was initialized in the filter in opposite
direction (0 deg), the estimated heading converged to the true heading with shift of -3.14
rad (-180 deg) in less than 5 seconds as shown in Figure (5.8).

6 T T T T T T T

true heading

5 2\ *— CRTPV-EKF- estimated heading -
+—— CRTPV-EKF- estimated heading+pi

the heading (rad)

1 [ [ [ [ [ [ [
o} 20 40 60 80 100 120 140 160
time (le-1 sec)

Figure (5.8): Estimated trajectory by EKF configured as in 1st row of Table (5.5)

L [ [ L L L L
1501~ -

true polar velocity
100~ =~ CRTPV-EKF- estimated polar velocity n
~— CRTPV-EKF- minus estimated polar velocity

50— s

v (m/s)

0 ~_ .
50— —
-1001~ .

-150— i

[ [ [ [ [ [ [

0 10 20 30 40 50 60 70 80
time (1le-1 sec)

Figure (5.9): Estimated polar velocity by EKF configured as in 1st row of Table (5.5)
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While the estimated velocity converges to minus the true velocity in less than 4 seconds
as in Figure (5.9) and in Table (5.5). The rms of the estimation error is 148.5 m/s for the
estimated but the rms for the minus estimated is 6.2 m/s, which is not steady estimation
error since the estimation error dies but is generated in the first 4 seconds.

The position trajectory converges in 2 seconds with rms of 1.7 m for 250 sec simulation

time, the reverse estimation trap for CTRA_EKF is illustrated in 1% row of Table (5.6).

Table (5.6): The RMS estimation error of reverse trapped CTRA_EKF with known
process, measurement variance and initial conditions of (5.1b)

CT-CTRA synthesizing data model parameters The estimation error RMS
Xo | Zo | Vo | o | Qo | @y | 0F | 0f | 0f | of | Dist. v h | w a
50|50 |20 |180 |2 |15 | 2% |22 |22 | 2% | 1.67 | 496.63 | 180 | 6.3 | 3.13
50|50 (20| 180 |2 |15 |22 |22 |22 |22 | 1.71 | 5481 |84 |8.7 | 0.347

since the true inital heading is 180 deg while it was initialized in the filter in opposite
direction (O deg), the estimated heading in less than 2 seconds converged to the true
heading with shift of -179.85 deg (-3.139 rad). That is the rms of the estimation error for

250 sec simulation time as shown in Figure (5.10).

6 T T T T T T

true heading
5 *—— CRTA-EKF- estimated heading
~— CRTA-EKF- estimated heading+pi

the heading h:(rad)
w
1
1

0 [ [ [ [ [ [ 7

0 10 20 30 40 50 60 70
time (1le-1 seconds)

Figure (5.10): Estimated heading by EKF configured as in 1st row of Table (5.6)

The estimated velocity converges to minus the true velocity in less than 4 seconds as in
Figure (5.11). Table (5.6) shows the rms of the estimation error as 496.63 m/s while the
rms for the minus estimated is 7.606 m/s, which is not steady estimation error since the
estimation error dies but is generated after the first 2 seconds. Thus, it is concluded that

it is faster than CTRPV convergence.
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true polar velocity
= CRTA-EKF- estimated polar velocity
100— *— CRTA-EKF-minus estimated polar velocity —

50— -

the polar velocity v:(m/s)
o
I
1

50— —

-100— -

-150 — —

_ [ [ [ [ [ [

0 10 20 30 40 50 60 70
time (1e-1 seconds)

Figure (5.11): Estimated polar velocity by EKF configured as in 1st row of Table (5.6)

Also, the estimated acceleration converges to minus the true acceleration in 7 seconds as
in Figure (5.12). Table (5.6) shows the rms of the estimation error is 3.13 m/s? while the

rms for the minus estimated is 0.33 m/s2. There is noise about true acceleration

true forward acceleration
CRTA-EKF- estimated forward acceleration
CRTA-EKF- minus estimated forward acceleration

the forward acceleration a: (m/sz)
o
I
1

-3k [ [ [ [ [ —
0 50 100 150 200 250 300
time (le-1 seconds)

Figure (5.12): Estimated acceleration by EKF configured as in 1st row of Table (5.6)

The position trajectory converges in less thanl.5 seconds with rms of 1.6704 m for 250
sec simulation time.

Its concluded that for known fully stochastic initial conditions with zero initial
state estimate and known noise characteristics, the CTRPV-EKF converges very quickly
(in 6 seconds at worst case) to the true states of the system. Noting that the estimated
heading surely converges to the true heading or the true heading shifted by (pi rad) (the
reverse direction) because of the farness of the initial estimates. If we have a near initial

heading estimate, it would converge to the true heading without any shift.
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5.1.1.2 Unknown stochastic initial conditions

In this case the filters have no information about the true initial states of the system model
but have a knowledge of the system model and measurement noise characteristics. Thus,
the filter performance is inspected with deterministic zero states initialization and
deterministic zero states with the mechanical limits uncertainty initialization.

5.1.1.2.1 Zero initial conditions

The deterministic zero states initialization of the CTRPV-EKF filter are:

% 0 x 00000
I IR
Rop=|2] =|o] ,Pop=cov|?| =]o 0 0 0 o (5.2a)
th H [hJ [o 0 0 0 oJ
@lojo ol 0 0 0 0 0

The deterministic zero states initialization of the CTRA-EKF filter are:

Xom = , Pojo = cov (5.2b)

cocoococoo
cocoococoo
coococoo

DD DN X

coococoo

DD DN X
cocoococo
coococo
cocoococo

dojo 400

Figure (5.13) shows the filter configuration of zero deterministic initial conditions with

known process, measurement variance and initial conditions of (5.2)

| measurement noise |
~N(0,032)
~N(0,02)

Free motion

J=~N(0, Cr]z) True states XmrZm
a=~N(0,0%) x,z,v,h wa

XU|0 = U,Pulo =0

Initial conditions Q =daig (012, F)
X0, Zg, Vo, ho, Wy, Qg

R =daig(c},0?) |—

Figure (5.13): The filter configuration of zero deterministic initial conditions with
known process, measurement variance and initial conditions of (5.2)

Table (5.7) inspects the performance of the deterministic zero states initialized CTRPV-
EKF and CTRA-EKF for data generated by CT-CTRA model with zero initial conditions
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and Gaussian noise jerk, turn acceleration of ~N(O,a,2 m/s®), ~N(0,02 rad/s?) provided by
the measured position corrupted by Gaussian noise of ~N(0,62 m),~N(0,62 m/s®), the
RMS estimation error for 250 sec simulation time, where the empty a row represents
CTRPV_EKEF results, while the nonempty arow represents CTRA_EKEF results.

Table (5.7): The RMS estimation error of CTRPV_EKF, CTRA_EKF with known
variant process and measurement variance and initial conditions of (5.2a, b)

CT-CTRA synthesizing data model parameters The estimation error RMS
Xo | Zo | Vo | ho | Qo | wg | 62 | 0f | 02 | 02 | dist | v h w a

11 | 148 |6.27 | 11.97
0791094 |59 | 1188 | 04
15919 | 64 | 134
08412 | 21 | 11.3 | 4.65
14 1182|186 | 6.9
0.63] 03 |103| 6.2 |[0.16
0.69 | 223 | 46 | 9.37
035063482 93 [0.44

0O|0|0|0|0| 0|3 32|33

0(0[O0|0|0|0|3]|3|3]|3

ojo0oj0|0|O0O|O0|121 |1 3|3

0o|{0j0]|O0O]|O0|O0 |3 |3F]|1|1

For the zero initial states case, the initialization of the filters is matched with chance for
trapped by reverse estimation by both filters. The estimation error’s RMS is very low
for the two filters. It’s also noted that the CTRA-EKEF estimation is closer to the true
states than CTRPV-EKF especially the position trajectory and the polar velocity. In the
2" row, the filters were trapped in reverse estimation, rms of minus v for CTRA is
0.9372 m/s, while rms of minus v for CTRPV is 3.1645 m/s.

Table (5.8): The RMS estimation error of CTRPV_EKF, CTRA_EKF with known
process and measurement variance and initial conditions of (5.2a, b)

CT-CTRA synthesizing data model parameters The estimation error RMS
Xo | Zo | Vo |ho | o |wo | 0i | of | of | of |dist| v h ) a
6.69 | 245 | 582 | 1.56

6.47 | 2.96 | 10.28 | 2.64 | 0.596

10 10| 5 |45|05| 3 |0.052]0.12 | 0.82 | 1.52

Table (5.8) inspects the performance of the deterministic zero states initialization of
CTRPV-EKF and CTRA-EKEF for non zero initial conditions CT_CTRA generated data,
figure (5.14) shows very good trajectory estimation over the whole estimation period (250
seconds) with distance error rms of 6.69 m, 6.47 m for CTRPV-EKF, CTRA-EKF
respectively. To remove the pre-convergence error, the rms of the estimation error at the
period from 15s to 250s is found 4.6562m, 0.8599 m for CTRPV-EKF, CTRA-EKF
respectively so the CTRA is better in terms of steady error by 3.7963 m.
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the model time update
200 T T T T T T T T T T

180~ s !

true positions

160 - true positions + white noise b
CTRPV-EKF- estimated positions )
140 — * CTRA-EKF- estimated positions -

120~

100 -

80—

60—

ego Z-axis, velodyne reverse X-axis

401~

20~

0 5 10 15 20 25 30 35 40 45 50 55
ego X-axis, velodyne reverse Y-axis

Figure (5.14): Estimated trajectory by EKF configured as in Table (5.8)

The CTRPV is faster convergent than CTRA with less overshoot for the position
trajectory. Figure (5.15) shows very good heading angle estimation with RMS estimation
error of 5.82 deg, 10.28 deg for CTRPV-EKF, CTRA-EKEF respectively over the whole
estimation period (250 seconds). That doesn’t imply that CTRA-EKF is worse than
CTRPV-EKF by 4.46 deg steady error. To remove the pre-convergence error, the rms of
the estimation error at the period from 30s to 250s is computed as 0.9413 deg, 0.2412 deg
for CTRPV-EKF, CTRA-EKF respectively. The CTRA is better in terms of steady error
by 0.7001deg. However, the CTRPV is faster convergent than CTRA with less overshoot
for the heading as in Figure (5.15)

true heading
= CTRA-EKF- estimated heading
CTRPV-EKF- estimated heading

the heading h:(rad)

a [ I I I I
0 50 100 150 200 250 300
time (1e-1 seconds)

Figure (5.15): Estimated heading by EKF configured as in Table (5.8)
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Figure (5.16) shows a very good polar velocity estimation with RMS estimation error of
2.45 m/s, 2.96 m/s for CTRPV-EKF, CTRA-EKF respectively over the whole estimation
period (250 seconds). However, the CTRPV is faster convergent than CTRA with less
overshoot but CTRPV is biased by steady error of 2.3926 m/s that is the rms of the
estimation error at the period from 30s to 250s for CTRPV-EKF, while it was 0.1058 m/s
for CTRA-EKF.

35 T T T T T T T T T

— true polar velocity
»—— CTRA-EKF- estimated polar velocity ]
—— CTRPV-EKF- estimated polar velocity ~

30—

the polar velocity v:(m/s)

— [ [ [ [ [ [ [
0 50 100 150 200 250 300 350 400 450 500
time (1e-1 seconds)

Figure (5.16): Estimated polar velocity by EKF configured as in Table (5.8)

Figure (5.17) is the estimation plot that shows very good turn rate estimation with error
rms of 1.56 deg/s and 2.64 deg/s for CTRPV-EKF and CTRA-EKF respectively over the
whole estimation period (250 seconds). To remove the pre-convergence error, the rms of
the estimation error at the period from 30s to 250s is computed 0.393 deg/s and 0.31 deg/s.
Then, the CTRPV is faster convergent than CTRA with less overshoot as shown in Figure
(5.17).

0.7 T T T T T

0.6— —

05— true tumn rate —
*— CTRA-EKF- estimated turn rate
0.4 \ CTRPV-EKF- estimated turn rate —

0.3 -

02— —

the turn rate w: (rad/s)

01~ N\ .

o~ N —

01— -

0.2+ -

03 r
0 50 100 150 200 250 300

time (1e-1 seconds)

Figure (5.17): Estimated turn rate by EKF configured as in Table (5.8)

CTRA has the capability of the forward acceleration estimation as in Figure (5.18) with

RMS estimation error of 0.596 m/s? over the whole estimation period (250 seconds). To
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remove the pre-convergence error, the rms of the estimation error at the period from 30s

to 250s which is compute as 0.029 m/s?.

6 T T T T T T I T
— true forward acceleration
5 - CTRA-EKF- estimated forward acceleration

the forward acceleration a: (m/s2)
N
T
1

2 [ [ [ L [ L [ L [
0 50 100 150 200 250 300 350 400 450 500
time (le-1 seconds)

Figure (5.18): Estimated acceleration by EKF configured as in Table (5.8)

Table (5.9) shows that the filters converge well for wide range of the true initial states on
the assumption of deterministic zero initial states, where the empty a row represents
CTRPV_EKEF results, while the nonempty arow represents CTRA_EKF results.

Table (5.9): The RMS estimation error of CTRPV_EKF, CTRA_EKF with variant
known process, measurement variance and initial conditions of (5.2a, b)

CT-CTRA synthesizing data model parameters The estimation error RMS
Xo | Zo | Vo |ho | a9 | wo | 0Z | 0f | 0f | 07 | dist v h 1) a
24.03 | 20.5 | 8.98 | 315
2723 | 364 | 125 | 35 |5.59
15.3 16 1.8 | 53
5.48 | 565 | 0.6 | 9.85|1.08
154 | 20.3 | 13.4 | 6.23

194 | 2325|156 | 9.05] 16.1

100 | 100 {100 {90 | 10 | 10 | 1 | 1 | 32| 32

100 | 100 | 100 {90 | 10 | 10 | 3% | 3% | 32 | 32

100 | 100 | 100 | 90 | -10 | -10 | 32 | 32 | 32 | 32

Its found that it tends to diverge for far true initial states, and when o2 and o2 are less
than o and of.

Its concluded that the deterministic zero states initialization is critical convergent
since its stability is very sensitive for the farness of the true initial states, the system model
noise, the measurement noise, and the system model noise to the measurement noise ratio.
The CTRA-EKEF also still proves its dominant performance especially in reduction of

steady bias in the estimation of the position trajectory and the polar velocity.

5.1.1.2.2 Mechanical limitations based initial conditions

In theory, the goal of a proper stochastic model may appear to accurately model the

specific types of uncertainty that exist in the system actuation and perception. Many of
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the models that have proven most successful in practical applications vastly overestimate
the amount of uncertainty. By doing so, the resulting algorithms are more robust to
violations of the Markov assumptions, such as unmodeled state and the effect of
algorithmic approximations (THRUN, Sebastian, 2005). Practically the on-road vehicles
motion is mechanically limited according to the structure and the physical properties of
its components, so its initial states are surely limited such that we could assume zero
initial states with covariance of the square of the mechanical limits of the vehicle as the
following for CTRPV

2
[Z] M [z] | 0 2z, 0 0 0 |
Xop=|?| =10l Pgo=cov|[?] =70 0 vi, O 0 (5.3a)
P llOJI R | 0 0 0 h%, O |
o 0 @lopp | 2 |
0lo 0 0 0 0 wiy
For CTRA
2 0 1 [¥m 0O 0 0 0 0]
H [o] H 0 2z, 0O 0 0 0
5 7 |0| _ Iﬁl 0 0 vi, O 0 0
=21 =1|7l.Poo = - 5.3b
o H A I I I R
lEJ ng 1] 0 0 0 0 hy O
@-olo fo 0o 0 0 0 wil

Figure (5.19) shows the filter configuration of mechanically limited initial conditions with

known process, measurement variance and initial conditions of (5.3)

‘ measurement noise ‘
~N(0,53)
~N(0,07)

Free motion
] =~N(,d}) True states X Zm
a=~N(0,0%) X,z,v,h,ma

—_ — 2
Xojo = 0.Pojo = Xnichiim.

Initial conditions Q = daig(af,03)
X9, Zg, Vo, ho, wo, g

| R =daig(d?,07) —

Figure (5.19): The filter configuration of mechanically limited initial conditions with
known process, measurement variance and initial conditions of (5.3)
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Assuming that x7,, = zZ,, = 100 meter that is the longest distant could be efficiently
recognized by the stereo system v, = 200 kTm = 55.62 % that is the maximum velocity

of the observed vehicle. While assuming the vehicle motor could drive its velocity from
- 2 55.6 2 m .., 2

0 to 200 km/h in 3 seconds such aj;,, = (T) = 343.5,1it’s reasonable to set h;,,, =

m?rad = 9.8696 rad. Since assuming that the steering could drive the turn rate to 90

2
deg/s, s0 wi,, = (g) rad/s = 2.4674 rad/s, , where the empty a row represents

CTRPV_EKEF results, while the nonempty arow represents CTRA_EKF results.

Table (5.10) inspects the performance of the mechanically limited full stochastic
initialization of CTRPV and CTRA-EKF for zero initial state of the generation data
model, where the empty a row represents CTRPV_EKF results, while the nonempty a

row represents CTRA_EKF results.

Table (5.10): The RMS estimation error of CTRPV_EKF, CTRA_EKF with variant
known process, measurement variance and initial conditions of (5.3a, b)

CT-CTRA synthesizing data model parameters The RMS estimation error

Xo | Zo | Vo | ho |G | wo | 0F | 0f | 0f | of | dist | v h w a
125 | 2.36 | 134 | 12.7

2 | g2 | g2 | a2
0101070700 3 3 3 3 0.88 | 1.07 | 10.9 | 12.24 | 0.73
1.11 | 165.7 | 1944 | 47.6
0.82 | 165.8 | 534.8 | 20.9 | 2.53

0| 0|0|0|0]| 0 |32]3]3]3

The RMS estimation error is very low for the both filters since the filters initial states
match the true initial states. the CTRA-EKF estimation is more accurate than CTRPV-
EKF especially the position trajectory and the polar velocity, with chance for trapped by
reverse estimation for both filters. In the 2" row, RMS of reversed estimated — for
CTRA is 1.124 m/s, while in CTRPV is 2.25 m/s.

Table (5.11): The RMS estimation error of CTRPV_EKF, CTRA_EKF with variant
known process, measurement variance and initial conditions of (5.3a, b)

CT-CTRA synthesizing data model parameters The RMS estimation error

Xo | Zo | Vo | ho | ao | wo | ai | of | of | of |dist| v h w a
) ) ) ,1301]157| 359.6 | 7.6

10 | 10 5 45 | 05 | 3 |0.05%|01%2]0.8%|15 265 | 137 | 863 15 029
496 | 9.2 | 2.96 8.57
247 | 3.68 | 2.24 8.92 | 1.26
572 | 11.3 | 2.86 9.05
2.1 | 205|248 9.99 | 1.05
10.7 | 20.4 | 362.1 | 9.19
44 |768|359.96 |11 2.75

50 | -75 | 35 | 45 9 45 32 3| 3P| 3

50 | 75 | -35 | -45 | -9 |-45| 3? 3| 3P| 3

100 | 100 | 55.6 | 180 | 18.5 | 90 12 12 12 12
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For far nonzero initial states in

Table (5.11) in the 2nd and 3rd rows both filters demonstrate good estimation results with
low RMS estimation error larger than twice the RMS of, where the empty arow represents
CTRPV_EKEF results, while the nonempty arow represents CTRA_EKEF results.

Table (5.10). The results in the 1st row shows very good trajectory estimation over the

whole estimation period (250 seconds) with distance error rms of 3.01 m, 2.65 m for
CTRPV, CTRA-EKF respectively, indicating that CTRA-EKEF is better than CTRPV-
EKF by 0.36 m. To remove the pre-convergence error, the RMS estimation error at the
period from 15s to 250s is computed as 2.4393 m and 0.3 m for CTRPV and CTRA-EKF
respectively. Thus, the CTRA is better in terms of steady error by 2.1393m. The CTRPV

is faster convergent than CTRA with less overshoot for the position trajectory as in Figure

(5.20).

240

220
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ego Z-axis, velodyne reverse X-axis
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the model time update
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true positions + white noise

- CTRPV-EKF- estimated positions
CTRA-EKF- estimated positions

-40

-35 -30 -25 -20
ego X-axis, velodyne reverse Y-axis

-15

-10

Figure (5.20): Convergence of estimated trajectory by EKF configured as in Table

(5.11)
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Figure (5.21) shows very good heading angle estimation with RMS estimation error of
359.6 deg and 8.63deg for CTRPV and CTRA-EKF respectively over the whole
estimation period (250 seconds). To remove the pre-convergence error, the RMS
estimation error at the period from 30s to 250s was compute as (359.74 = 0.26 deg) and
0.274 deg for CTRPV-EKF and CTRA-EKF respectively. The CTRA shows better
steady error by 0.0119 deg. However, the CTRPV shows faster convergent than CTRA
with more overshoot for the heading.

7 T T T T T T T T T

true heading
*— CTRA-EKF- estimated heading
CTRPV-EKF- estimated heading+2pi

the heading h:(rad)
N
]
1

3 [ [ L [ L [ L [ L
0 20 40 60 80 100 120 140 160 180 200
time (le-1 seconds)

Figure (5.21): Estimated heading by EKF configured as in Table (5.11)

Figure (5.22) shows very good polar velocity estimation with RMS estimation error of
1.57m/s and 1.37 m/s for CTRPV-EKF and CTRA-EKF respectively over the whole
estimation period (250 seconds). However, the CTRPV shows faster convergent than
CTRA with less overshoot. CTRPV is biased by steady error of 1.5584 m/s that is the
RMS estimation error at the period from 30s to 250s for CTRPV-EKF, while it was
0.0636m/s for CTRA-EKF.

25

20—

15—

10—

— true polar velocity

the polar velocity v:(m/s)

= CTRA-EKF- estimated polar velocity
— CTRPV-EKF- estimated polar velocity

5 [ [ [ [ [ [ [
0 50 100 150 200 250 300 350 400
time (le-1 seconds)

Figure (5.22): Estimated polar velocity by EKF configured as in Table (5.11)
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Figure (5.23) shows very good turn rate estimation with error rms of 7.6 deg/s and 1.5
deg/s for CTRPV-EKF and CTRA-EKF respectively over the whole estimation period
(250 seconds). To remove the pre-convergence error, the RMS estimation error at the
period from 30s to 250s was computed as 0.3699 deg/s and 0.3137 deg/s. The CTRPV

shows faster convergent than CTRA with more overshoot.

4 T T T T T T T T

|
35 | ,
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*— CTRA-EKF- estimated turn rate
25— I CTRPV-EKF- estimated turn rate —
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[ I
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]
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time (le-1 seconds)

Figure (5.23): Estimated turn rate by EKF configured as in Table (5.11)

CTRA has the capability of the forward acceleration estimation as in Figure (5.24) with
RMS estimation error of 0.29 m/s? over the whole estimation period (250 seconds). To
remove the pre-convergence error, the RMS estimation error at the period from 30s to

250s was compute as 0.0195 m/s?.

3 T T T T T T T T T

25 /N -
/ \ true forward acceleration

\ +—— CTRA-EKF- estimated forward acceleration
21— \ —

15— / —

1 —

the forward acceleration a: (m/sz)

0.5 f \ S ) _ B

o= —

05 [ [ [ [ [ [ [ [ [
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Figure (5.24): Estimated acceleration by EKF configured as in Table (5.11)

For large number of experiments for generated data in the constraint of 62, 52<100 m,

2 3 2 2
0] <15m/s »Oq <5 rad/s ) (XOI Zo, Vo, hOi Wo, aO) < (xlim' Z1im» Vlimo hlim' Wiim, alim)
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Its found that the stochastic zero initial states with variance of the mechanical limitations
based filters always converges to the true states, independent of the generation of the
random jerk and turn acceleration.

Mechanical limited stochastic zero states initialization is clearly reliable
convergent. The CTRA-EKF still proves its dominant performance especially for

reduction of steady bias in the estimation of the position trajectory and the polar velocity.

5.1.2 On-road practical designed situations

In this category the motion of the observed vehicle is designed to simulate real situations
of the on-road environment, by accurately choosing the model initial states and predefined
jerk and turn acceleration function of time that achieve the desired motion.

So, the two major practical challenges should be faced, the first is that the period of
capturing the observed vehicle through the stereo vision system is tiny doesn’t succeeds
few second because of the limited field of view of the stereo system (90 deg typically),
and the limited recognized distance by the stereo vision system (typically 150 meters
since there are not zoom), this problem needs fast convergent estimator before the vehicle
departures the image plane. The second challenge is the accurate characterization of the
exciting inputs J(t), a(t), a(t) that fits our filters process noise variances such that is the
closest

J(®)=~N(0,67 m/s),a(t)=~N(0,aZ m/s®), a(t) =~N(0,0Z rad/s?)

For this aspect its would be discussed how to derive the maximum model variances
through the analysis of mechanical limitation of the motion based on the assumption in

the previous section, In order to compute the maximum ajz, 02, its needed to capture the

maximum positive and negative jerks and accelerations that mechanically achievable,

one way to do it is to force the vehicle to achieve its acceleration limit (%) m/s?

assharpest impulse as it could do, which could be approximated by gaussian function (3.4)
in Figure (5.25)
~(t=9)? 55.6

a(t) = ajpm-€ 26> : Qi = T,(S = 0.5, c=5 (3.4)
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Figure (5.25): the sharpest max. achievable acceleration as in equation (3.4)

So 62 = var[a(t)] = 24.85 m/s?as computed numerically by MATLAB Thus, the

jerk in Figure (5.26) with computed variance 012 = 61m/s®

25

20

15

10

Jerk (mfs®)
o

10 -

15 -

20~ -

-25

r r r r r r r r r
o 10 20 30 40 50 60 70 80 20 100
time (second)

Figure (5.26): the time derivative of the acceleration in equation (3.4)
Similarly, in order to compute the maximum turn acceleration variance, it’s necessary to
capture the turn rate that the car could achieve its maximum turn rate as sharpest impulse

which could be assumed as gaussian function (3.5) in Figure (5.27).

=(t=c)?

w(t) = wym xe 282 8§ =0.5, c=5 (3.5)

25 T T T T T

T T T T

1.5— —

tum rate (rad/s)
n
I
|

0.5— —

o5 r ! r r ! I r ! r
o 1 2 3 a 5 6 7 8 9 10
time (secon d)

Figure (5.27): the sharpest max. achievable turn rate as in equation (3.5)

Thus, the turn acceleration function is in Figure (5.28) with variance of 62 ==
var[a(t)] =1.087 rad/s®
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Figure (5.28): the time derivative of the turn rate as in equation (3.5)

So, the mechanically limited max. process variances for both filters are computed, and
will the filters with max. process variances performance is inspected. Figure (5.29) shows
the filter configuration of mechanically limited initial conditions of (5.3) with known

measurement variance and unknown process variance.

| measurement noise ‘
~N(0,02)
~N(0,07)
Designed practical situation
—-(t-¢)*
I =lim-e 28% CT_CTRA Data True states Xy Zm
=(t=c)? X, 7,0,h,w,a
@ = ayp.e 2 model

Xojo = 0, Pgjo = X

mich.lim.

Initial conditions | Q = daig(var(]), var(a))
X0, Zg, Vo, hu, wq, Qg

[ R = daig(aZ,6?) I—

Figure (5. 29): The filter configuration of designed practical situation

5.1.2.1 left turning situation
This situation simulate a vehicle at left front of the ego at (x,,z,) = (—=50,20)move
forward parallel to the ego x-axis with hy = 0 deg, vy = 10%, and zero wy, ay, then it

is turning left in an intersection urban to move forward parallel to the ego z-axis with zero

exciting jerk, zero acceleration, constant velocity and the turn rate acceleration a(t)in
Figure (5.30)

69

www.manharaa.com



turn acceleration (rad/sz)

r
10 20 30

r r
40 50

N
60

time (le-1 seconds)

Figure (5.30): the exciting turn rate acceleration for left turning situation
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The variance of the applied turn rate acceleration in figure (5.29) is computed numerically

as 02 = 0.029 rad/s*that is very small relative to the maximum mechanical that was

computed in the previous section as 1.087 rad/s? , and since the exciting jerk is zero,

and the velocity is constant, so the actual variances a,z, 02 =0, so the difficulty that is

facing the estimators is high, the position measurement is corrupted by gaussian noise of

02,02 = 0.2 m, both filters are initialized by mechanical limits as in the previous section,

with the maximum process variances, Table (5.12) shows the RMS estimation error for

different 10 seconds simulation periods.

Table (5.12): the RMS estimation error of CTRPV, CTRA_EKF with known
measurement variance, unknown process variance and initial conditions of (5.3a, b)

EKF process covariance | Sim. The RMS estimation error
ol of o2 | period | dist | v h | o | a
1,087 548 10 [352] 16 [235]115
61 10 |352[187|323]59 |11

The following figures shows the estimated states
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the model time update
8 U 0 0 0 0

75~

6.5
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—* true positions + white noise
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—t— CTRA-EKF- estimated positions
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Figure (5.31): Estimated trajectory for left turning situation

In Figure (5.31), although both filters start from (0,0) position which is far from the true
position they quickly capture the true trajectory with 3.52m distance error RMS for
both.

N
]

true heading
—*— CTRA-EKF- estimated heading
—*— CTRPV-EKF- estimated heading

e
&

the heading h:(rad)

05 [ [ [ [ [ [ [ [ [
0 10 20 30 40 50 60 70 80 90 100
time (le-1 seconds)

Figure (5.32): Estimated heading for left turning situation

Figure (5.32) shows good heading angle estimation by both filters, from Table (5.12)
CTRA estimated heading converges to the true heading with RMS of 2.35deg, while
CTRPV converges to the true heading with RMS of 3.23 deg, the polar velocity estimation
in Figure (5.33),
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Figure (5.33): Estimated polar velocity for left turning situation

The estimated turn rate is plotted in Figure (5.34) shows alike performance of the

CTRA-EKF although its rms is 5.9 rad/s while for CTRPV-EKF is 11.5 rad/s

05 ||

true turn rate

| ‘\ *— CTRA-EKF- estimated turn rate
| ] —*— CTRPV-EKF- estimated tum rate

the tumn rate w: (rad/s)

15— y.

2 [ [ [ [ [ [ [ [ [
[¢] 10 20 30 40 50 60 70 80 90 100
time (1e-1 seconds)

Figure (5.34): Estimated turn rate for left turning situation

The estimated acceleration in Figure (5.35) converges with rms of 1.1 m/s.

10 T T T T T T T T T
8~ Tﬁ —
i
< Il
L “\‘
£
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g [
g o 1
3 [
I
E \
E + =
5 ‘ \Vﬁ\t
Q | Ny A .
k= | 2\ : * A\ + F ok kN 7 x
ol . %ﬁf ty AN w W VAN £y ﬂ—/\" v /‘j %f\ AN FAV.IAY f=d
\\p‘ W Y \4 1\‘\/ i ot K\’L + j ¥ \K/ Kt\#
2 [ [ [ [ [ [ [ [ [
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Figure (5.35): Estimated acceleration for left turning situation

Its concluded that for left turning situation both filters initialized by mechanical
limited stochastic initial conditions and maximum process variances converges well and

quickly with fluctuating because the process variances are too high from the true exciting
inputs.
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5.1.2.2 oncoming vehicle
This situation simulates straight oncoming vehicle ego from (x,,z,) = (—=5m, 100m)

move towards the ego parallel to the negative ego z-axis with hy, = 270 deg, vy, = 10 ?

and zero wy, ay, then it with zero exciting jerk, constant velocity and zero exciting turn
rate, so the actual variances 05,0]2,03 = 0 that is very small relative to the maximum
mechanical variances, so it shows you how the difficulty is that facing the estimators, the
position measurement is corrupted by gaussian noise ofa2,62 = 0.2 m. The two filters are
initialized by mechanical limits as in the previous section, with the maximum process
variances, the following Table (5.13) shows the RMS of the estimation error for different

simulation periods.

Table (5.13): the RMS estimation error of CTRPV, CTRA_EKF with known
measurement variance, unknown process variance and initial conditions of (5.3a, b) for
oncoming vehicle situation

EKF process covariance | Sim time The RMS estimation error
ol of ol dist v, (—v) h w a
548 8.95 1.197 718.7 | 94

1.087 61 >0 8.95 1.23 7186 | 6.7 | 7.2
1,087 548 20 14.15 | 19.84 (1.4845) | 185.4 | 16.95

' 61 14.15 2.15 3624 | 7.7 ]6.13
1,087 548 5 28.3 19.5(2.19) | 1228 | 18.3

' 61 28.3 2.24 708 | 442 | 3.95

It’s clear that the longer simulation periods have less RMS estimation error because it’s

enough for convergence The following figures for 5seconds simulation
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the model time update
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Figure (5.36): Estimated trajectory for oncoming vehicle situation

In Figure (5.36) although both filters start from (0,0) position which is far from the true

position they quickly capture the true trajectory,

30 T T T T T T T T T

25—

20—

15—~

the heading h:(rad)

true heading
~t CTRA-EKF- estimated heading *
—*— CTRPV-EKF- estimated heading

ol+—s [ I [ [ [ I I [ [
0 5 10 15 20 25 30 35 40 45 50
time (1le-1 seconds)

Figure (5.37): Estimated heading for oncoming vehicle situation

In Figure (5.37) CTRA estimated heading converges to 270.1 deg (990.1 deg), while
CTRPV converges to 89.2deg (1529.2 deg) trapped by reverse motion estimatin, as clear
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from the polar velocity estimation in Figure (5.38),
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Figure (5.38): Estimated polar velocity for oncoming vehicle situation

The estimated turn rate is plotted in Figure (5.39) shows dominant performance of the
CTRA-EKF since its rms is 4.42 rad/s while for CTRPV-EKF is 18.3 rad/s

14—

1.2

true turn rate

1 f
——*— CTRA-EKF- estimated turn rate
—— CTRPV-EKF- estimated turn rate ||

0.8~

the turn rate w: (rad/s)

time (1e-1 seconds)

Figure (5.39): Estimated turn rate for oncoming vehicle situation

The estimated acceleration is plotted in Figure (5.40) with rms of 3.95 m/s.
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Figure (5.40): Estimated acceleration for oncoming vehicle situation

Its concluded that for oncoming vehicle situation both filters initialized by
mechanical limited stochastic initial conditions and maximum process variances
converges well and quickly with chance of reverse estimation trap and fluctuating because
the process variances are too high from the true exciting inputs.

5.2 KITTI real dataset

The proposed estimators is applied on sample dataset from KITTI dataset represent real
on-road situations for the purpose of the inspection of the reliability of the proposed
estimation EKFs and the evaluation of its performance in realistic situations.

As explained in sections 3.3.1 and 3.3.2 the reference data is extracted from the velodyne
laser scanner (X, y, rz) from the tracklet for the 1% dataset, but manually for the 2"%applying
the necessary processing like transformation from the observed vehicle the centroid to the
rear or front center according the visible scene of the car equations (3.26-28, and
transformation from laser scanner coordinates into the left camera coordinates, equations
(3.29).

| prepare the stereo observations through finding manually the projection of the rear or
front center point of the car in the left camera (ul, vl), using the disparity function by
MATLAB to find its disparity (d) with the right camera, so we use (ul, d) to extract the
measured (x, z) and applying the proposed filters. This test data classified in road category
by KITTI, under the name of (2011 _09 26 drive_0029) in (1.7 GB), it consists of 436
frames in period of (00:43 minutes) with image resolution of 1392 x 512 pixels, it captures

3 Cars, and , 1 Trucks, we interested the second car captured in frames 118 to 172 in 54
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frames (00:54 minute), such that the observed vehicle is black Skoda that pass the ego

from right straight forward in the same road faster than the ego, as in Figure (5.41)

Figure (5.41): four picked frames from test no.1 scenario

The mechanically limited full stochastic initialization in equations (3.3a, b) is used, for
2 2 2 2 2 2 2 2 m) 2 2

Xiim» Ziim = 90°m, vy, = 50°m/s, hy;,,, = m*rad, hy;,, = (5) rad/s, aj,, =

18.532m/s?, the linear measurement model noise variance assumed stationary was

computed as the variance of difference between the stereo vision measures and the

velodyne measures
2 —
Oy = 17ar[xstereo - xvelodyne] = 0.029m,
2 —
0; = var[Zstereo - Zvelodyne] = 7.568m (56)

Figure (5.42) plots Xstereos Xveloaynes Zstereor Zveloayne TOF teSt N0.1 data
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Figure (5.42): Xstereor Xvetodynes Zstereos Zvelodyne TOr t€st n0.1 vs. frames

the nonlinear measurement model noise variances 62, 62 was computed as the variance
of difference between the stereo vision measures and the velodyne measures

05, = var|ULgereo — ULperoayne| = 191.2 pixel

02 = var|dsiereo — Avetoayne] = 0.707 pixel (5.7)
_ Jx-Xvelodyne _ fxb
ULvelodyne = W + Xo, dvelodyne = m (5.8)

Figure (5.43) and Figure (5.44) plots ULgtereos ULyerodaynes Astereos Avetoayne fOr testno.1

1200 T T T T T T T T T T

1150 f .

1100~ \ .

1050 [~ \ i

1000 \ —— Laser scanner computed (UL velodyne)
Stereo vision measured (UL stereo)

950 |~ |
900~ |
850 |~ |
800 [~ SN .

750~ S ,

the longitudinal projection on hte left camera (UL): pixel

5 10 15 20 25 30 35 40 45 50
frame number

Figure (5.43): ULstereo» ULyeroayne Tor test no.1 along frames
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Figure (5.44): dgtereo Averoayne TOr test no.lalong frames

Also, the maximum process variances developed in section 5.1.2 is used,

5 rad 5 m 5 m
Oy = 10875—2 ’ o; = 615—3 ) O, = 548 S_Z (59)

5.2.1 Linear Measurement model results

Figures (5.45 through 49) plots the estimated states by the impulse discretized process
models of CTRPV and CTRA filters with mechanically limited process variance in
equation (5.9), linear measurement variance in equation (5.6) and initial conditions of

equations (5.3a, b), for test no.1 for 54 frames (5.4 seconds).
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the model time update
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Figure (5.45): Estimated trajectory by linear measurement model for KITTI data

In Figure (5.45) although both filters start from (0,0) position which is far from the true
position they quickly capture the true trajectory, the rms of lateral position x error
estimation is 0.9727m, 0.9731m for CTRPV,CTRA respectively, while the rms of
longitudinal position z error estimation is 4.3563m, 5.9341m for CTRPV,CTRA
respectively, indicating that the rms of the distance error estimation is 4.4635m, 6.0134m
for CTRPV,CTRA respectively, that is the performance of CTRPV dominants

y [ L [ L [ L [ L [ [
0 —*»*%/\\ |
\
-0.2— \f —
| true heading from kitti trackletshifted by (-pi)
0.4 — \ *— CTRA-EKF- estimated heading |
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= |
E 0.6 'a -
= \
208 x .
el |
© |
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< 1= | —
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140~ | f

Ll v BEEESSS  ale as i an T Tl
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Figure (5.46): Estimated heading by linear measurement model for KITTI data
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Figure (5.46) shows that CTRA estimated heading converges to the true heading shifted
by —m with total rms of 24.27 deg, while CTRPV converges to the true heading shifted
by —m with total rms of 24.21 deg that is less than CTRAbecause CTRPV converges
faster than CTRA, note that the both filters is in reverse estimation trap situation, so the

minus the polar velocity is the true estimation, see Figure (5.47).

s0= I I I ——— I I I I I [ .
45— —
20— —

g 351 R .

e o SEe go00oT o - \GJ@«

> 301 GO o cooee00eee”  OUTRQROY R

3 25— ] —

>

8 20~ 2 -

g /

2 15~ —

—*— CTRA-EKF- minus estimated polar velocity
10~ —&— CTRPV-EKF-minus estimated polar velocity a
5— —
o i [ [ [ i [ [ [ [ [ i
0 5 10 15 20 25 30 35 40 45 50

time (1le-1 seconds)

Figure (5.47): Estimated minus polar velocity by linear measurement model for KITTI
data

The estimated minus acceleration is plotted in Figure (5.48).
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Figure (5.48): Estimated minus acceleration by linear measurement model for KITTI
data

The estimated turn rate is plotted in Figure (5.49).
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Figure (5.49): Estimated turn rate by linear measurement model for KITTI data

Applying the impulse discretized process model with linear measurement model filters

with adaptive noise variances, computed as the following equations as (3.17,18)

fx-b
o,(k) = 200 * 0, (5.10a)
o (k) = o~ W) b b o (5.10b)

20 T amw”
Figure (5.50) shows that o, (k) is increasing dramatically with time

sigma-z propogation over the frames
18
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///
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Figure (5.50): linear measurement model z_deviation for test data no.1

Figure (5.51) shows that o, (k) is crossing zero at 37,38 frames
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Figure (5.51): linear measurement model x_deviation for test data no.1

we have the results depicted in the following figures for 54 frames (00:54 minute)

the model time update
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Figure (5.52): Estimated trajectory position by adaptive measurement model for KITTI
data

note that CTRA filter captures the true trajectory as shown in Figure (5.52), while CTRPV
still about the stereo measured trajectory, the rms of lateral position x error estimation is
0.3477 m, 0.3468m for CTRPV,CTRA respectively, while the rms of longitudinal
position z error estimation is 2.8926 m, 3.5423 m for CTRPV,CTRA respectively,

indicating that the rms of the distance error estimation is 2.9134 m, 3.5592 m for
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CTRPV,CTRA respectively, that is the performance of CTRPV dominants, and the
nonlinear measurement model dominants since its more accurate than the linear.
Applying the zero-order-hold discretized process model with linear measurement model

filters, we have very close results to previous.

5.2.2 Nonlinear Measurement Model Results

Figures (5.53 through 57) plots the estimated states by the impulse discretized process
models of CTRPV and CTRA EKF filters with mechanically limited process variance in
equation (5.9), nonlinear measurement variance in (5.7) and initial conditions equations
(5.3a, b), for test no.1 for 54 frames (00:54 minute).

In Figure (5.53) both filters capture the true trajectory, the rms of xestimation is 0.3174m,
0.4355m for CTRPV,CTRA respectively, while the rms of z estimation is 3.2756m,
4.2897m for CTRPV,CTRA respectively, indicating that the rms of the distance
estimation is 3.291m, 4.3118m for CTRPV,CTRA respectively, that is the performance
of CTRPV dominants, and the nonlinear measurement model dominants since its more

accurate than the linear.

the model time update

70~

60—

50—

ego Z-axis, velodyne reverse X-axis

P
40 |~ il \elodyne data as reference -
e *— stereo observation data
%
#*— CTRPV-EKF-filter estimation
30 C CTRA-EKF-filter estimation -
X/Kx,
x|
20—~ X;‘ u
§&
&2&
X
10— ® u
S i r r r r r r
6 7 8 9 10 11 12 13 14

ego X-axis, velodyne reverse Y-axis

Figure (5.53): Estimated trajectory by nonlinear measurement model for KITTI data
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Figure (5.54): Estimated heading by nonlinear measurement model for KITTI data

In Figure (5.54) CTRA estimated heading converges to the true heading shifted by —m

with total rms of 18.88 deg, while CTRPV converges to the true heading shifted by —n
with total rms of 18.87 deg close to CTRA, note that the both filters is in reverse

estimation trap situation, so the minus the polar velocity is the true estimation as in Figure

(5.55), Applying the zero-order-hold discretized process model with nonlinear

measurement model filters, results were very close to impulse discretized process model

the polar velocity v:(m/s)
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Figure (5.55): Estimated minus polar velocity by nonlinear measurement model for

KITTI data

The estimated minus acceleration is plotted in Figure (5.56)
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Figure (5.56): Estimated minus acceleration by nonlinear measurement model for
KITTI data

The estimated turn rate is plotted in Figure (5.57).
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Figure (5.57): Estimated turn rate by nonlinear measurement model for KITTI data
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Chapter 6
Conclusions, Recommendations and Perspectives

6.1 General Conclusions

In this thesis, a novel approach for estimating the motion of on-road vehicles from
a moving platform based on stereo image sequences by means of 1% order Extended
Kalman Filter is proposed. the realistic data KITTI benchmark is suitable for our work
since it provides accurate 3D pose for objects. The proposed simplified bicycle model
based dynamic models CTRPV,CTRA shows its reliability in the estimation of the
motion of the vehicle as proved by the results, those simple motion models recover the
complexity of the vehicle dynamics that depends on internal parameters of the specified
vehicle ( such that its mass, center of gravity, dimensions, tire stiffness, road friction,
aerodynamic coefficient, inertias) that are impossible to be estimated through the ego
sensors and there are a lot of variants of the on-road vehicles differs in their structure and
physical characteristics. The estimated states are the 2D position and orientation of an
object relative to the ego-vehicle, as well as the object’s, velocity, acceleration and the
rotational velocity (yaw rate). The proposed linear measurement model assumes a
stationary zero mean white noise results in reliable work although KITT]I stereo vision
system introduces nonstationary biased (nonzero mean) random process. The proposed
discretization methods impulse and zero-order-hold at the 10 Hz sampling frequency of
KITTI dataset doesn’t show significant difference in terms of the filter performance for
CTRPV, CTRA with both linear and nonlinear measurement models.

Its proved analytically and numerically that our proposed system is full observable
for the on-road practical situations state subspace except for zero polar velocity of the
observed vehicle. The practical issues such as the filter initialization, the numerical errors
are covered fully. The overall system is systematically evaluated both on synthesized and
real-world data of KITTI benchmark. The synthesized data results show that
mechanically limited initial conditions and process noise variance filter accurately and
fast convergent estimate the object pose and motion parameters for a very complicated
situation, the experimental results show that the proposed approach is able to reliably
estimate the object pose and motion parameters in a variety of challenging situations. The

limits of the system are also carefully investigated.
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For unknown initial states with known initial estimate variance and known noise
characteristics the unconstrained synthesized data the known quick convergence with
reverse estimation trap chance, the deterministic zero initial states show critical stability,
the mechanical limited stochastic zero initial states is reliable convergent CTRA-EKF
demonstrates faster convergence, less chance of reverse estimation trap and reduced
steady estimation error of (x,z v)than CTRPV-EKF. The designed practical situation data
(left turning and front oncoming) the mechanical limited stochastic zero initial states
CTRPV and CTRA-EKF and maximum process variances show fast fluctuating
convergence. For KITTI benchmark, the stochastic zero initial states with mechanically
limited variance, and the analyzed KITTI stereo vision measurement model noise
characteristics and mechanically limited process noise variance the CTRPV and CTRA-
EKF converges reliably and accurately indicating that the nonlinear measurement model
performance dominants.

Its shown that the computational numeric errors at the computation of the
Jacobeans and the inverse of the pre-fit residual covariance matrix S in the case of division
by zero or close to singular matrix are big challenge for maintaining the estimator stability

especially that require a lot of avoidance conditions.

6.2 Recommendations

It’s sure that future investigation in accurate characterization of the stereoscopic
vision measurement noise properties of no-stationarity, biasness, and variance
determination would push forward the reliability of the stereo vision system, also the
linear stereoscopic vision measurement model analysis shows zero lateral position
variance o, at a specified parameter, that seems to give a chance of noise-by noise
cancellation in our estimation system.

In the future work the reverse estimation trap could be solved by developing detection
algorithm of the situation then adapted estimation to reverse the polar velocity v by
changing its sign and reverse the heading by shifting (k.z: & /s integer).

The reverse estimation could be solved by assisted initialization through the help
of the driver or other program such that the algorithm could be adapted to reverse the
polar velocity v by changing its sign and reverse the heading by shifting (pi rad).

The turn acceleration deviation of 2 rad/s? that excited the CTRA model means that the

turn rate could change by 2*time rad/s (above fig). Therefore, the heading could change
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by t?rad, so there is chance of the 1 rad heading change (reverse the forward direction of
the car) if constant 2 rad/s? turn acceleration applied for sqrt(pi) =1.7225 sec, but this is
not practical situation since that is very sharp., Its concluded that for known fully
stochastic initial conditions and known noise characteristics the CTRA-EKF converges
faster than CTRPV-EKF to the true states of the system, noting that the estimated heading
surely converges to the true heading or the true heading shifted by (pi rad) (the reverse
direction) because of the farness of the initial estimates. If we have a near initial heading
estimate, it would converge to the true heading without any shift. It’s noted from large
number of experiments that the reverse trap occurred 99% of times at beginning of the
filter (bad initialization) and 1% in the middle course of filtering (rough turn = high
sigma_alpha). Thus, the first problem could be solved by assisted initialization by the
help of the driver or other program. While the second problem could be solved by
knowing that the minus polar velocity is not on-road vehicle situation. Therefore, the
algorithm could be adapted to reverse the negative v by changing its sign and reverse the

heading by shifting (pi rad).

6.3 Improvements and Perspectives

The main contribution of the thesis is conquering the KITTI realistic dataset, such that
that the coordinate frames were assigned, the dynamic models, measurement model were
formulated, to be compatible for the estimation algorithms development and evaluation
on that dataset, another advantage is that the all our implemented MATLAB functions
were organized and written such that they are extendable for deployment in any other
estimation algorithm, so it’s ready to extend our work through applying advanced filters
like unscented Kalman filter, interacting multiple models, particle filter.

There are lot variant dynamic models developed in the literature such as the
coordinated turn siblings like Constant Steering Angle and Velocity (CSAV) and
Constant Curvature and Acceleration (CCA), there are also another category called
coordinate uncoupled models contains Constant Cartesian Velocity and Constant
Cartesian Acceleration models, so it’s ready to extend our work through applying all these

models.

90

www.manaraa.com



References

Geiger A., Lenz P. and Urtasun.R. (2012). Are we ready for Autonomous Driving? The
KITTI Vision Benchmark Suite. CVPR.

Geiger A., Lenz P., Stiller C. and Urtasun R. (2013). Vision meets Robotics: The KITTI
Dataset. /nternational Journal of Robotics Research (IJRR).

ASIRT. (2017, 9 5). road crash statistics. Retrieved from Association for safe
international road travel : http://asirt.org/initiatives/informing-road-users/road-
safety-facts/road-crash-statistics

Badino H. (2004). A Robust Approach for Ego-Motion Estimation Using a Mobile Stereo
Platform. First Intern. Workshop on Complex Motion (IWCMO04), (pp. 198-208).
Guenzburg, Germany.

Barrois B., Hristova S., Woehler C., Kummert F. and Hermes C. (2009). 3D Pose
Estimation of Vehicles Using a Stereo Camera. /ntelligent Vehicles Symposium,
IEEE, (pp. 267-272).

Bar-Shalom, Y., Li X., and Kirubarajan T. (2001). Estimation with Applications to
Tracking and Navigation. Wiley Interscience.

Barth, A. (2010). Vehicle Tracking and Motion Estimation Based on Stereo Vision
Sequences.

Buch N., Yin F., Orwell J., Makris D. and Velastin. S. A. (2009). Urban vehicle Tracking
using a Combined 3D Model Detector and Classifier. Conference on Knowledge-
Based and Intelligent Information & Engineering Systems, (pp. 169-176).

Schramm D., Hiller M. and Bardini R. (2014). Vehicle Dynamics: Modeling nad
Simulation. Verlag Berlin Heidelberg: springer.

Dahlkamp H., Pece A., Ottlik A., and Nagel H. (2004). Differential analysis of Two
Model-Based Vehicle Tracking Approaches. In Lecture Notes in Computer Science
(pp. 71-78).

Dang T., Hoffmann C., and Stiller C. (2002). Fusing optical flow and stereo disparity for
object tracking. /ntelligent Transportation Systems, IEEE Conference, (pp. 112-117).

Gustafsson F. and Isaksson A. (1996). Best choice of coordinate system for tracking
coordinated turns. 5th IEEE Conference on Decision and Control, (pp. 3145 —3150).

Franke U. and Kutzbach I. (1996). Fast Stereo based Object Detection for Stop and Go
Traffic. /ntelligent VVehicles Symposium, IEEE., (pp. 339-344). Tokyo, Japan,.

Gehrig S. and Stein F. (2007, june). Collision Avoidance for Vehicle-Following Systems.
Intelligent Transportation Systems, IEEE Transactions, pp. 233-244.

Hahn M., Woéhler C., Einhaus J., Hermes C. and Kummert F. (2010). Tracking and
Motion Prediction of Vehicles in Complex Urban Traffic Scenes. 7agung Sicherheit
aurch Fahrerassistenz., (pp. 1-8). Miinchen, Germany.

Hartikainen J., Solin A. and Sarkka S. (2011). Optimal Filtering with Kalman Filters and
Smoothers a Manual for the Matlab toolbox EKF/UKF.

Julier S. J. and Uhlmann, J. K. (2004). Unscented filtering and nonlinear estimation.
Proceedings of the IEEE, (pp. 92(3):401-422).

Kalman, R. (1960). A New Approach to Linear Filtering and Prediction Problems.
Transaction of the ASME, Journal of Basic Engineering, pp. 35-45.

Kamijo S., Matsushita Y., Ikeuchi K. and Sakauchi M. (2000). occlusion robust vehicle
tracking for behavior analysis utilizing spatio-temporal Markov random field model.
Intelligent Transportation Systems, IEEE Conference, (pp. 340-345).

91

www.manaraa.com



Kim S., Kang J., Oh S., Ryu,Y., Kim K. and Park S. (2008). intelligent and integrated
driver assistance system for increased safety and convenience based on all-around
sensing. Intelligent and Robotics System, 51(3), 261-287.

Koller D., Daniilidis K. and Nagel H. (1993, june). Model-Based Object Tracking in
Monocular Image Sequences of Road Traffic Scenes. /nternational Journal of
Computer Vision, pp. 257-281.

Labayrade R., Aubert D., and Tarel J. P. (2002). Real time obstacle detection in
stereovision on non flat road geometry through "v-disparity” representation.
Intelligent Vehicles Symposium, IEEE, (pp. 646-651).

Leibe B., Cornelis N., Cornelis K., and Van Gool L. (2007). Dynamic 3D Scene Analysis
from a Moving Vehicle. Computer Vision and Pattern Recognition, pp. 1-8.

Leotta M. and Mundy J. (2007). Epipolar Curve Tracking in 3-D. /mage Processing, IEEE
International Conference , (pp. 325-328).

Liu M., Wu C., and Zhang Y. (2007). Motion vehicle tracking based on multi-resolution
optical flow and multi-scale Harris corner detection. Robotics and Biomimetics,
IEEE International Conference, (pp. 2032—2036).

Akhlag. M. Tarek R. Bo Helgeson S., Shakshuki E. M. (2011). Designing an integrated
driver assistance system using image sensors. Springer Science+Business Media.
Mark W. van der and Gavrila D. M. (2006). Real-time dense stereo for intelligent

vehicles. /ntelligent Transportation Systems, IEEE Transactions, pp. 38-50.

Roth M. (n.d.). EKF/UKF Manuvering Target Tracking using Coordinated Turn Models
with Polar/Cartesian Velocity.

MIT, Team. (2007). Team MIT. DARPA Urban Challenge Technical Paper.

Mosabbeb E., Sadeghi M., Fathy M. and Bahekmat M. (2007). A low cost strong shadow-
based segmentation approach for vehicle tracking in congested traffic scenes.
Machine Vision, International Conference, (pp. 147-152).

Alvertos N. (1989). Camera Geometries for Image Matching in 3-D Machine Vision.

Pepy R., Lambert A. and Mounier H. (2006, June 13-15). Reducing navigation errors by
planning with realistic vehicle model,. /n Intelligent VVehicles Symposium, IEEE, pp.
300-307.

Rajagopalan, A. and Chellappa R. (2000). Vehicle Detection and Tracking in Video.
Image Processing, International Conference, (pp. 351-354).

Hartley R. and Zisserman A. (2004). Multiple View Geometry in Computer Vision. New
York: Cambridge University Press.

Schubert R. , Richter E. and Wanielik G. (2012). Comparison and Evaluation of
Advanced Motion Models for Vehicle Tracking. 730-735.

Blackman S. S. and Popoli R. (1999). Design and Analysis of Modern Tracking. Artech
House.

Sérkka S. (2007). On unscented Kalman filtering for state estimation of. /EEE
Transactions on Automatic Control, 529), 1631-1641.

Sivaraman S. and Trivedi M. M. (2013, december). Looking at Vehicles on the Road: A
Survey of Vision-Based Vehicle Detection, Tracking,and Behavior Analysis. /EEE
TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, pp.
1773-1795.

Sun Z., Bebis G. and Miller R. (2004). On-road vehicle detection using optical sensors: a
review. /ntelligent Transportation Systems, IEEE Conference, (pp. 585-590).

THRUN S. (2005). PROBABILISTIC ROBOTICS. Stanford ,Freiburg ,Seattle: Stanford
University, University of Freiburg ,University of Washington of Washington.

Zeng Z. and Ma S. (2002). An efficient vision system for multiple car tracking. Pattern
Recognition, IEEE International Conference, (pp. 609-612).

92

www.manaraa.com



Appendix A: MATLAB Functions Implementation

CTRPV.m file

function [ x, z, v, h, w] = CTRPV( x, z, v, h, w ,dxe ,dze, dhe, dT)
if(abs(w)<1e-7;

x =-dxe + x +dT*v*cos(h);

y = -dze +z + dT*v*sin(h);

else
X =-dxe + x + sin(w*dT/2)*cos(h+w*dT/2)*2*v/w;
y = -dze +z + sin(w*dT/2)*sin(h+w*dT/2)*2*v/w;
end
x = cosd(dhe)*x + sind(dhe)*y;
z = -sind(dhe)*x + cosd(dhe)*y;
vV =V
h = -(dhe*pi/180) +h + w*dT;
w =w,
end
CTRA.m file

function [ x,z,psi,v,w,a ] = CTRA( x,z,psi,v,w,a ,dxe ,dze, d_psi_e,dT)
if(abs(w) < 1e-7))%divide by zero prevent
X =-dxe + x + (dT*cos(psi)*(2*v + a*dT))/2;
Z = -dze + z + (dT*sin(psi)*(2*v + a*dT))/2 ;
else
X =-dxe + x +((v*'w+a*w*dT)*sin(psi+w*dT) +a*cos(psi+w*dT) -v*w*sin(psi) -a*cos(psi))/w2 ;
Z = -dze + z +((-v*w-a*w*dT)*cos(psi+w*dT) +a*sin(psi+w*dT) +v*w*cos(psi) -a*sin(psi))/w”2 ;
end
x = cosd(d_psi_e)*X + sind(d_psi_e)*Z;
z = -sind(d_psi_e)*X + cosd(d_psi_e)*Z;
psi =-(d_psi_e*pi/180) + psi + w*dT ;
vV =V + a*dT;

W =W,
a=a
end

Analytic_CTRA_JAC.m file

Syms ego_psiego_x1X_ovwdTpsiaZ_oego_x2

x_augemented = cos(ego_psi)*(-ego_x1 + X_o +((v*w+a*w*dT)*sin(psi+w*dT) +a*cos(psi+w*dT) -
v*w*sin(psi) -a*cos(psi))/w”2) + sin(ego_psi)*(-ego_x2 + Z_o +((-v*w-a*w*dT)*cos(psi+w*dT)
+a*sin(psi+w*dT) +v*w*cos(psi) -a*sin(psi))/w"2);

JA(1,3) = diff(x_augemented,psi);

JA(1,4) = diff(x_augemented,v);

JA(1,5) = diff(x_augemented,w);

JA(1,6) = diff(x_augemented,a);

'

if (w==0)

JA(1,3) = limit(JA(1,3),w,0);
JA(1,4) = imit(JA(1,4),w,0);
JA(1,5) = limit(JA(1,5),w,0);
JA(1,6) = limit(JA(1,6),w,0);
end
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z_augemented =-sin(ego_psi)*(-ego_x1 + X_o +((v*w+a*w*dT)*sin(psi+w*dT) +a*cos(psi+w*dT) -
v*w*sin(psi) -a*cos(psi))/w”2) + cos(ego_psi)*(-ego_x2 + Z_o +((-v*w-a*w*dT)*cos(psi+w*dT)
+a*sin(psi+w*dT) +v*w*cos(psi) -a*sin(psi))/w2;

JA(2,3) = diff(x_augemented,psi);

JA(2,4) = diff(x_augemented,v);

JA(2,5) = diff(x_augemented,w);

JA(2,6) = diff(x_augemented,a);

if (w==0)

JA(2,3) = limit(JA(2,3),w,0);
JAR2,4) = imit(JA(2,4),w,0);
JA(2,5) = limit(JA(2,5),w,0);
JA(2,6) = limit(JA(2,6),w,0);
end

JAC_CTRPV1.m file

function [ JA] = JAC_CTRPV1(x1, x2, v, h, w ,ego_x1 ,ego_x2, ego_h, dT)
JA = zeros(5,5);

JA(1,1)= cosd(ego_h);

JA(1,2)= sind(ego_h);

JA(1,3) = cosd(ego_h)*sin(w*dT/2)*cos(h+w*dT/2)*2/w + sind(ego_h)*sin(w*dT/2)*sin(h+w*dT/2)*2/w;
JA(1,4) = -cosd(ego_h)*sin(w*dT/2)*sin(h+w*dT/2)*2*v/w + sind(ego_h)*sin(w*dT/2)*cos(h+w*dT/2)*2*v/w;
JA(1,5) = cosd(ego_h)*(cos(h+w*dT/2)*(-sin(w*dT/2)*2*v/(w” 2) +cos(w*dT/2)*dT*v/w)-
(sin(w*dT/2)*sin(h+w*dT/2)*dT*v/w));

JA(1,5) = JA(1,5) + sind(ego_h)*(sin(h+w*dT/2)*(-

sin(w*dT/2)*2*v/(w”2)+cos(wW*dT/2)*dT*v/w) +(sin(w*dT/2)*cos(h+w*dT/2)*dT*v/w));

if(w==0)

JA(1,3) = dT*cos((ego_h*pi/180) - h);
JA(1,4) = dT*v*sin((ego_h*pi/180) - h);
JA(1,5) = (dT~2*v*sin((ego_h*pi/180) - h))/2;
End

JA(2,1)= -sind(ego_h);

JA(2,2)= cosd(ego_h);

JA(2,3) = -sind(ego_h)*sin(w*dT/2)*cos(h+w*dT/2)*2/w + cosd(ego_h)*sin(w*dT/2)*sin(h+w*dT/2)*2/w;
JA(2,4) = sind(ego_h)*sin(w*dT/2)*sin(h+w*dT/2)*2*v/w + cosd(ego_h)*sin(w*dT/2)*cos(h+w*dT/2)*2*v/w;
JA(2,5) = -sind(ego_h)*(cos(h+w*dT/2)*(-sin(w*dT/2)*2*v/(w" 2)+cos(w*dT/2)*dT*v/w)-
(sin(w*dT/2)*sin(h+w*dT/2)*dT*v/w));

JA@2,5) = JA(2,5) + cosd(ego_h)*(sin(h+w*dT/2)*(-

sin(w*dT/2)*2*v/(w”2)+cos(w*dT/2)*dT*v/w) +(sin(w*dT/2)*cos(h+w*dT/2)*dT*v/w));

iftw==0)

JA(2,3) =-dT*sin((ego_h*pi/180) - h);

JA(2,4) =dT*v*cos((ego_h*pi/180) - h);
JA(2,5) =(dTA2*v*cos((ego_h*pi/180) - h))/2;
end

JAB3) =1;
JA44) = 1;
JA4,5) = dT;
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JA(5,5) = 1;
end

JAC_CTRA.m file

function [ JA] = JAC_CTRA( X_o,Z_o,psi,v,w,a ,ego_x1 ,ego_x2, ego_psi ,dT)

J_presecion = le-7;

JA = eye(6);

JA(1,1)= cosd(ego_psi);

JA(1,2)= sind(ego_psi);

JA(1,3) = (CTRA( X_o,Z_o,psi+J_presecion,v,w,a ,ego_x1,ego_x2, ego_psi,dT) - CTRA( X_o,Z_o,psi,v,w,a
,ego_x1,ego_x2, ego_psi,dT))/J_presecion;

JA(1,4) = (CTRA(X_o,Z_o,psiv+J_presecionw,a ,ego_x1,ego_x2, ego_psi,dT) - CTRA( X_o,Z_o,psi,v,w,a
,ego_x1,ego_x2, ego_psi,dT))/J_presecion;

JA(1,5) =(CTRA( X_o,Z_o,psi,v,w+J_presecion,a ,ego_x1,ego_x2, ego_psi,dT) - CTRA( X_o,Z_o,psi,v,w,a

,ego_x1,ego_x2, ego_psi,dT))/)_presecion;

JA(1,6) = (CTRA( X_o,Z_o,psi,v,w,a+J_presecion ,ego_x1 ,ego_x2, ego_psi,dT) - CTRA( X_o,Z_o,psi,v,w,a
,ego_x1,ego_x2, ego_psi,dT))/J_presecion;

JA(2,1)= -sind(ego_psi);
JA(2,2)= cosd(ego_psi);

[ X 01,Z_o1,psilvlyawrl,al] = CTRA( X o,Z _o,psi+J_presecion,v,w,a ,ego_x1,ego_x2, ego_psi,dT);
[ X 02,Z_02,psi2v2yawr2,a2 ] = CTRA(X_o,Z_o,psiv.w,a ,ego_x1 ,ego_x2, ego_psi,dT);

JA@,3) = (Z_o1-Z_o2 )/)_presecion;

[ X_01,Z_o1,psilvlyawrl,al ] = CTRA(X_0,Z_o,psiv+]_presecionw,a ,ego_x1,ego_x2, ego_psidT);
JA(2,4) = (Z_o1-Z_o2 )/)_presecion;

[ X 01,Z_o1,psilvlyawrl,al ] = CTRA(X_ o,Z_o,psiv,w+]_presecion,a ,ego_x1,ego_x2, ego_psi,dT);
JA(R2,5) = (Z_o1-Z_o2 )/)_presecion;

[ X 01,Z_o1,psilvlyawrlal ] = CTRA(X_o,Z_o,psiv,w,a+J)_presecion ,ego_x1,ego_x2, ego_psidT);
JA(@2,6) =(Z_o1-Z_o2 )/J_presecion;

JA3,5) = dT;
JA(4,6) = dT;
end

95

www.manharaa.com




